1. bookVolume 69 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Development and Characterization of EST-SSR Markers for Juniperus squamata (Cupressaceae), an ecologically important conifer in Asian mountains

Published Online: 10 Oct 2020
Volume & Issue: Volume 69 (2020) - Issue 1 (January 2020)
Page range: 116 - 122
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Juniperus squamata, an endemic conifer of Asia, is an important shrub ecologically and economically. Yet little is known about its genetic diversity and population structure due to lacking of highly polymorphic molecular markers. In this study, expressed sequence tag microsatellite markers (EST-SSR) were developed for Juniperus squamata. Illumina HiSeq data were used to reconstruct the transcriptome of this species by de novo assembly. Based on this transcriptome, 18 SSR markers were designed and successfully amplified. Just one locus was eliminated due to its detection of null alleles and the remaining 17 loci were polymorphic, generating five to 14 alleles per locus in J. squamata. Markers cross-amplification tests were successful in two closely related species of J. squamata. These markers will serve as a basis for further studies to assess the genetic diversity and population structure of J. squamata. As well, they could be useful in promoting sustainable forest management strategies for this species in the face of global climate change.

Keywords

Adams RP (2014) Junipers of the world: the genus Juniperus. Bloomington, Indiana, U.S.A.: Trafford Publishing. pp: 290-291. ISBN:978-1409723259.Search in Google Scholar

Ashrafi H, Hill T, Stoffel K, Kozik A,Yao JQ, Chin-Wo SR, Deynze AV (2012) De novoassembly of the pepper transcriptome (Capsicum annuum): a benchmark forin silicodiscovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571. https://www.biomedcentral.com/1471-2164/13/571Search in Google Scholar

Bettencourt SX, Mendonça D, Lopes MS, Rocha S, Moniardino P, Monteiro L, Machado CA (2015) Genetic diversity and population structure of the endemic Azorean juniper, Juniperus brevifolia (Seub.) Antoine, inferred from SSRs and ISSR markers. Biochemical Systematics and Ecology 59:314-324. https://doi.org/10.1007/s10709-009-9416-510.1007/s10709-009-9416-519844793Search in Google Scholar

Chen Y, Zeng Hui. (2015) Study on the plant diversity of the Sabina squamata community in Jiaozishan National Nature Reserve. Guizhou Forestry Science and Technology 43(02):10-14. https://doi.org/10.16709/j.cnki.gzlykj.2015.02.001Search in Google Scholar

Chunco AJ (2014) Hybridization in a warmer world. Ecology and Evolution 4(10):2019-31. https://doi.org/10.1002/ece3.105210.1002/ece3.1052406349324963394Search in Google Scholar

Dakin EE, Avise JCJH (2004) Microsatellite null alleles in parentage analysis. Heredity 93: 504-509. https://doi.org/10.1038/sj.hdy.680054510.1038/sj.hdy.680054515292911Search in Google Scholar

Douaihy B, Vendramin GG, Boratynski A, Machon N, Kharrat MBD (2011) High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants 2011: plr003. https://doi.org/10.1093/aobpla/plr00310.1093/aobpla/plr003306450822476474Search in Google Scholar

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.Search in Google Scholar

Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Kew (United Kingdom): Royal Botanc Gardens Pages:382-386. ISBN: 978-1842460689.Search in Google Scholar

Geng QF, Qing H, Ling ZR, Jeelani N, Yang J, Yoshikawa K, Miki NH, Wang ZS, Lian CL (2017) Characterization of polymorphic microsatellite markersfor a coniferous shrub Juniperus sabina (Cupressaceae). Plant Species Biology 32: 252-255.10.1111/1442-1984.12152Search in Google Scholar

Gómez JM, González-Megías A, Lorite J, Abdelaziz M, Perfectti F. (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodiversity and Conservation 24 (8):1843-57. https://link.springer.com/article/10.1007/s10531-015-0909-510.1007/s10531-015-0909-5Search in Google Scholar

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma FD, Birren BW, Nusbaum C, Toh KL, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644-652.10.1038/nbt.1883357171221572440Search in Google Scholar

Jiang DC, Wu GL, Mao KS, Fang JJ (2015) Structure of genetic diversity in marginal populations of black poplar (Populus nigra L.). Biochemical Systematics and Ecology 61: 297-302. https://doi.org/10.1016/j.bse.2015.06.01410.1016/j.bse.2015.06.014Search in Google Scholar

Klonner G, Dullinger I, Wessely J, Bossdorf O, Carboni M, Dawson W, Essl F, Gattringer A, Haeuser E, Van Kleunen M (2017) Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe? Diversity and Distributions 23 (8):934-43. https://doi.org/10.111/ddi.12578Search in Google Scholar

Li X-Y, Lin X-Y, Ruhsam M, Chen L, Wu M-Q, Thomas P, WenY-F (2019) Development of microsatellite markers for the critically endangered conifer Glyptostrobus pensilis (Cupressaceae) using transcriptome data. Silvae Genetica 68: 41-44. https://doi.org/10.2478/sg-2019-000710.2478/sg-2019-0007Search in Google Scholar

Liu ZH, Kuang S, Qing ML,Wang DM, Li DW (2019) Metabolite profiles of essential oils and SSR molecular markers in Juniperus rigida Sieb. et Zucc. from different regions: A potential source of raw materials for the perfume and healthy products. Industrial Crops and Products 133: 424-434. https://doi.org/10.1016/j.indcrop.2019.03.03410.1016/j.indcrop.2019.03.034Search in Google Scholar

Mao KS, Hao G, Liu JQ, Adams RP, Milne RI (2010) Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254-272. https://doi.org/10.1093/bioinformatics/btp67010.1093/bioinformatics/btp67020007741Search in Google Scholar

Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology: 639-655. https://doi.org/10.1046/j.1365-294x.1998.00274.xSearch in Google Scholar

Meglecz E, Pech N, Gilles A, Dubut VC, Hingamp P, Trilles A, Grenier R, Martin JE (2014) QDDversion 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. Molecular Ecology Resources 14: 1302-1313. https://doi.org/10.1093/bioinformatics/btp67010.1093/bioinformatics/btp670Search in Google Scholar

Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. International Journal of Molecular Sciences 14:22499-22528. https://doi.org/doi:10.3390/ijms14112249910.3390/ijms141122499385607624240810Search in Google Scholar

Michalczyk IM, Sebastiani F, Buonamici A, Cremer E, Mengel C, Ziegenha B, Vendramin GG (2006) Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. Molecular Ecology Notes 6: 346-348. https://doi.org/10.1111/j.1471-8286.2005.01227.x10.1111/j.1471-8286.2005.01227.xSearch in Google Scholar

Opgenoorth L (2009) Identification and characterization of microsatellite marker in the tetraploid Juniperus tibetica Kom. using next generation sequencing. Conservation Genetics Resources 1: 253-255. https://doi.org/10.1007/s12686-009-9062-310.1007/s12686-009-9062-3Search in Google Scholar

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28:2537-2539. https://www.ncbi.nlm.nih.gov/pubmed/22820204Search in Google Scholar

Pauls, S. U., Nowak, C., Bálint, M., & Pfenninger, M. 2012. The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22(4), 925-946. https://doi.org/10.1111/mec.1215210.1111/mec.1215223279006Search in Google Scholar

Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Green-wood G,Hashmi MZ, Liu XD, et al(2015) Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5(5): 424-430. https://doi.org/10.1038/NCLIMATE256310.1038/nclimate2563Search in Google Scholar

Qi WC, Lin F, Liu YH, Huang BQ, Cheng JH, Zhang W, Zhao H (2016) High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. BMC Plant Biology 16:139. https://doi.org/10.1186/s12870-016-0828-y10.1186/s12870-016-0828-y491273427317011Search in Google Scholar

Rozen S, Skaletsky H (2000) Primer3 on the WWW for General Users and for Biologist Programmers. In: Misener S, Krawetz SA (eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology™ (vol 132). Totowa, New Jersey, U.S.A.: Humana Press. pp: 365-386. ISBN: 978-0896037328. https://doi.org/10.1385/1-59259-192-2:36510.1385/1-59259-192-2:365Search in Google Scholar

Rumeu B, Sosa PA, Nogales M, Perez MA-G (2012) Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.). Conservation Genetics Resources 5: 457-459. https://doi.org/10.1007/s12686-012-9827-y10.1007/s12686-012-9827-ySearch in Google Scholar

Sertse D, Gailing O, Eliades N-G, Finkeldey R (2013) Transferability and application of microsatellites (SSRs) from Juniperus communis L. to Juniperus procera Hochst. Ex endl. Open Journal of Genetics 03: 115-126. https://doi.org/10.4236/ojgen.2013.3201510.4236/ojgen.2013.32015Search in Google Scholar

Summers K, Amos W (1997) Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobatesven rimaculatus. Behavioral Ecology 8: 260-267. https://doi.org/10.1016/0144-8188(95)00051-810.1016/0144-8188(95)00051-8Search in Google Scholar

Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). In: (ed) Theoretical and Applied Genetics 106: 411-422. https://doi.org/10.1007/s00122-002-1031-010.1007/s00122-002-1031-012589540Search in Google Scholar

Tsumura Y, Yoshimura K, Tomaru N, Ohba K (1995) Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical and Applied Genetics 91:1222-1236. https://doi.org/10.1007/bf0022093310.1007/BF0022093324170050Search in Google Scholar

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen S G (2012) Primer3-new capabilities and interfaces. Nucleic Acids Research 40: e115-e115. https://doi.org/10.1093/nar/gks59610.1093/nar/gks596342458422730293Search in Google Scholar

Vallejo MM, Hiscock SJ (2016) Hybridization and hybrid speciation under global change. New Phytologist 211 (4):1170-87. https://doi.org/10.1111/nph.1400410.1111/nph.1400427214560Search in Google Scholar

Vieira ML, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology 39: 312-328. http://dx.doi.org/10.1590/1678-4685-GMB-2016-002710.1590/1678-4685-GMB-2016-0027500483727561112Search in Google Scholar

Zhang Q, Li J, Zhao YB, Korban S, Han YP (2012) Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR Markers. Plant Molecular Biology Reporter 30: 539-546. https://doi.org/10.1007/s11105-011-0366-610.1007/s11105-011-0366-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo