1. bookVolume 69 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Chromosome Numbers in Gymnosperms - An Update

Published Online: 03 Mar 2020
Volume & Issue: Volume 69 (2020) - Issue 1 (January 2020)
Page range: 13 - 19
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

The present report is based on a cytological data base on 614 (56.0 %) of the total 1104 recognized species and 82 (90.0 %) of the 88 recognized genera of gymnosperms. Family Cycadaceae and many genera of Zamiaceae show intrageneric uniformity of somatic numbers, the genus Zamia is represented by a range of number from 2n=16-28. Ginkgo, Welwitschia and Gentum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra shows a range of polyploidy from 2x-8x based on n=7. The family Pinaceae as a whole shows 2n=24except for Pseudolarix and Pseudotsuga with 2n=44 and 2n=26 respectively. Araucariaceae constantly shows 2n=26 while Podocarpaceae has a range of 2n=18-38. Sciadopityaceae and Cupressaceae are represented by 2n=20 and 2n=22 respectively. Taxaceae shows variable numbers of 2n=24, 36 and 22. Polyploidy is exceptional being represented by 8.0 % of the taxa studied. B-chromosomes have been studied in 31 taxa while heteromorphic sex chromosomes have been reported in some dioecious taxa.

Keywords

Abraham A, Mathews PM (1962) Cytological studies in the cycads: sex chromosomes in Cycas. Annals of Botany 26: 261-266 https://doi.org/10.1093/oxfordjournals.aob.a08379210.1093/oxfordjournals.aob.a083792Search in Google Scholar

Ahuja MR (2005) Polyploidy in gymnosperms revisited. Silvae Genetica 54: 59-69. https://doi.org/10.1515/sg-2005-001010.1515/sg-2005-0010Search in Google Scholar

Ahuja MR (2009) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165: 5-19 https://doi.org/10.1007/s10681-008-9813-310.1007/s10681-008-9813-3Search in Google Scholar

Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens) (D. Don) Endl. and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genetica 51: 93–100.Search in Google Scholar

Armenise L, Simeone M, Piredda R, Schirone B (2012) Validation of DNA barcoding as an efficient tool for taxa identification and detection of species diversity in Italian conifers. Eur. J. Forest Res. 131: 1337-1353. https://doi.org/10.1007/s10342-012-0602-010.1007/s10342-012-0602-0Search in Google Scholar

Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APGIII. Bot. J. Linnean Soc. 161: 122-127. https://doi.org/10.1111/j.1095-8339.2009.01002.x10.1111/j.1095-8339.2009.01002.xSearch in Google Scholar

Christiansen H (1963) On the chromosomes of Pseudotsuga macrocarpa and Pseudotsuga menziesii. Silvae Genetica 12: 124-127.Search in Google Scholar

Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55-70. https://doi.org/10.11646/phytotaxa.19.1.310.11646/phytotaxa.19.1.3Search in Google Scholar

Davies BJ, O’Brien IEW, Murray BG (1997) Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169-185. https://doi.org/10.1007/bf0098544010.1007/BF00985440Search in Google Scholar

El Kaasaby YA, Colangeli AM, Sziklai O (1983) A numerical analysis of karyotypes in the genus Pseudotsuga. Canadian Journal of Botany 61: 536-544. https://doi.org/10.1139/b83-06010.1139/b83-060Search in Google Scholar

Farhat P, Hidalgo O, Robert T, Siljak-Yakovlev S, Leitch I, Adams RP, Daghar Kharrat MB (2019a) Polyploidy in the genus Juniperus: and unexpectedly high rete. Frontiers in Plant Science 10: Article 676 https://doi.org/10.3389/fpls.2019.0067610.3389/fpls.2019.00676654100631191584Search in Google Scholar

Farhat P, Siljak-Yakovlev S, Adams RP, Daghar Kharrat MB, Robert T(2019b) Genome size variation and polyploidy in the geographical range of Juniperus sabina L. (Cupressaceae). Botany Letters https://doi.org/10.1080/23818107.2019.161326210.1080/23818107.2019.1613262Search in Google Scholar

Farjon A (2018) The Kew review: conifers of the world. Kew Bulletin 73: 8 https://doi.org/10.1007/s12225-018-9738-510.1007/s12225-018-9738-5Search in Google Scholar

Hair JB, Beuzenberg EJ (1958) Chromosomal evolution of the Podocarpaceae. Nature 181: 1584-1586. https://doi.org/10.1038/1811584a010.1038/1811584a0Search in Google Scholar

Hill K (2005) Diversity and evolution of gymnosperms. In: Henry RJ (ed.), Plant Diversity and Evolution: Diversity and Phenotypic Variation in Higher Plants CABI Publishing Wallingford, Oxfordshire UK. https://doi.org/10.1079/9780851999043.002510.1079/9780851999043.0025Search in Google Scholar

Hizume M (1989) Karyomorphological studies in twelve species in the Taxodiaceae with special reference to cytotaxonomical position of Sciadopitys verticillata. Mem. Fac. Educ. Ehime Univ., Ser. 3, Nat. Sci. 9: 7–32Search in Google Scholar

Hizume M (2015) Fluorescent band patterns of chromosomes in Pseudolarix amabilis, Pinaceae. Cytologia 80: 151-157. https://doi.org/10.1508/cytologia.80.15110.1508/cytologia.80.151Search in Google Scholar

Hizume M, Akiyama M (1992) Size variation of chromomycin A3-band in chromosomes of Douglas fir, Pseudotsuga menziesii. Japanese Journal of Genetics 67: 425–435. https://doi.org/10.1266/jjg.67.42510.1266/jjg.67.425Search in Google Scholar

Hizume M, KondoK (1992) Fluorescent chromosome banding in five taxa of Pseudotsuga, Pinaceae. La Kromosomo II 66: 2257–2268.Search in Google Scholar

Hizume M, Kaneko K, Miyake T (2014) A method for the preparation of meiotic chromosomes of conifers and its applications. Chromosome Botany 9: 83-88. https://doi.org/10.3199/iscb.9.8310.3199/iscb.9.83Search in Google Scholar

Ickert Bond SM, Sousa A, Ya M, Pellicer J, Leitch I (2014) The evolution of genome size in gymnosperm genus Ephedra: Flow cytometry and new chromosome counts support high levels of polyploidy. Botany New Frontiers in Botany, The Boise Centre-Boise Idaho July 26-30, 2014.Search in Google Scholar

Johnson MAT, Kenton AY, Bennett MD, Brandham PE (1989) Voanioala gerardii has the highest known chromosome number in monocotyledons. Genome 32: 328-333. https://doi.org/10.1139/g89-44910.1139/g89-449Search in Google Scholar

Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13: 24-39 https://doi.org/10.1111/j.1558-5646.1959.tb02991.x10.1111/j.1558-5646.1959.tb02991.xSearch in Google Scholar

Khoshoo TN (1961) Chromosome numbers in gymnosperms. SilvaeGenetica 10: 1-7Search in Google Scholar

Khoshoo TN, Ahuja MR (1963) The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14: 522-533. https://doi.org/10.1007/bf0032147110.1007/BF00321471Search in Google Scholar

Mehra PN (1988) Indian Conifers, Gnetophytes and Phylogeny of Gymnosperms. Panjab University, ChandigarhSearch in Google Scholar

Mergen F (1961) The chromosomes of Pseudolarix amabilis. Cytologia 26: 213-216. https://doi.org/10.1508/cytologia.26.21310.1508/cytologia.26.213Search in Google Scholar

Moretti A (1990) Karyotype data on North and Central American Zamiaceae (Cycadales) and their phylogenetic implications. American Journal of Botany 77: 1016-1029. https://doi.org/10.1002/j.1537-2197.1990.tb13597.x10.1002/j.1537-2197.1990.tb13597.xSearch in Google Scholar

Moretti A, Sabato S (1984) Karyotype evolution by centromeric fission in Zamia (Cycadales). Pl. Syst. Evol. 146: 215–223. https://doi.org/10.1007/bf0098954710.1007/BF00989547Search in Google Scholar

Moretti A, Caputo P, Gaudio L, Stevenson DW (1991) Intraspecific chromosome variation in Zamia (Zamiaceae, Cycadales). Caryologia 44: 1–10. https://doi.org/10.1080/00087114.1991.1079701310.1080/00087114.1991.10797013Search in Google Scholar

Moretti A, Caputo P, Cozzolino S,Gaudio L (1993) Karyotypes of New World cycads. Pp. 263--270 in D. W. Stevenson & K. J. Norstog (editors), The Biology, Structure, and Systematics of the Cycadales: Proceedings of Cycad 90, the Second International Conference on Cycad Biology. Palm & Cycad Societies of Australia, Milton, Queensland.Search in Google Scholar

Napalitano A, Caputo P, Moretti A (2004) Karyology, phytogeography, and the origin of intraspecific karyotype variation in Zamia paucijuga and Z. polymorpha (Zamiaceae). Delpinoa 46: 71-83.Search in Google Scholar

Nicolalde-Morejon F, Vovides AP, Stevenson DW (2009) Taxonomic revision of Zamia in Mega–Mexico. Brittonia, 61:301-335 https://doi.org/10.1007/s12228-009-9077-910.1007/s12228-009-9077-9Search in Google Scholar

Norstog K (1980) Chromosome numbers in Zamia (Cycadales). Caryologia 33 419–428. https://doi.org/10.1080/00087114.1980.1079685510.1080/00087114.1980.10796855Search in Google Scholar

Norstog K (1981) Karyotypes of Zamia chigna (Cycadales). Caryologia 34: 255–260. https://doi.org/10.1080/00087114.1981.1079688910.1080/00087114.1981.10796889Search in Google Scholar

Ohri D, Rastogi S (2019) Sex determination in cycads. Nucleus. https://doi.org/10.1007/s13237-019-00302-210.1007/s13237-019-00302-2Search in Google Scholar

Olson K, Gorelick R (2011) Chromosomal fission accounts for small scale radiations in Zamia (Zamiaceae; Cycadales). Botanical Journal of the Linnean Society 165: 168-185. https://doi.org/10.1111/j.1095-8339.2010.01102.x10.1111/j.1095-8339.2010.01102.xSearch in Google Scholar

Owens JN (1967) Chromosme aberration in Douglas fir. Canadian Journal of Botany 45: 1910-1913. https://doi.org/10.1139/b67-20710.1139/b67-207Search in Google Scholar

Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent bio-geographical history of the long lived conifer Fitzroya cupressoides. J. Biogeogr. 27: 251-260. https://doi.org/10.1046/j.1365-2699.2000.00402.x10.1046/j.1365-2699.2000.00402.xSearch in Google Scholar

Rastogi S, Ohri D (2019) B-chromosomes in gymnosperms. Silvae Genetica 68: 51-54. https://doi.org/10.2478/sg-2019-000910.2478/sg-2019-0009Search in Google Scholar

Rastogi S, Ohri D (2019) Karyotype evolution in Cycads. Nucleus https://doi.org/10.1007/s13237-019-00302-210.1007/s13237-019-00302-2Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1975) The chromosome study of giant sequoia, Sequoiadendron giganteum. Silvae Genetica 24: 23-26.Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1984a) Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 29-54 https://doi.org/10.1007/bf0098457810.1007/BF00984578Search in Google Scholar

Schlarbaum SE, Tsuchiya T (1984b) A chromosome study of coast redwood, Sequoia sempervirens D. (Don) Endl. Silvae Genetica 33: 56-62Search in Google Scholar

Schutzman B, Vovides AP (1998) A new Zamia (Zamiaceae, Cycadales) from eastern Chiapas, Mexico. Novon 8: 441–446. https://doi.org/10.2307/339187110.2307/3391871Search in Google Scholar

Scott AD, Stenz NWM, Ingvarsson PK, Baum DA (2016) Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. New Phytologist 211: 186-193 https://doi.org/10.1111/nph.1393010.1111/nph.1393026996245Search in Google Scholar

Smarda P, Horova L, Knapek O, Dieck H, Dieck M, Razna K, Hrubik P, Orloci L, Papp L, Vesela K, Vesely P, Bures P (2018) Multiple haploids triploids and tetraploids found in modern day `living fossil’ Ginkgo biloba. Horticulture Research 5:55. https://doi.org/10.1038/s41438-018-0055-910.1038/s41438-018-0055-9616584530302259Search in Google Scholar

Tagashira N, Kondo K (1999) A karyotype comparison of nine species of aneuploid Zamia by using the conventional orcein staining and the fluoro-chrome CMA-DAPI differential staining methods. Cytologia 64: 449–458. https://doi.org/10.1508/cytologia.64.44910.1508/cytologia.64.449Search in Google Scholar

Tagashira N, Kondo K (2001) Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Systematics and Evolution 227:145–155. https://doi.org/10.1007/s00606017004510.1007/s006060170045Search in Google Scholar

The Plant List 2010. Version 1 Published on the Internet; http://www.theplantlist.org/Search in Google Scholar

Vallès V, Garnatje T, Robin O, Siljak-Yakovlev S (2015) Molecular cytogenetic studies in western Mediterranean Juniperus (Cupressaceae): a constant model of GC-rich chromosomal regions and rDNA loci with evidences for paleopolyploidy. Tree Genetics & Genomes 11:43 https://doi.org/10.1007/s11295-015-0860-310.1007/s11295-015-0860-3Search in Google Scholar

Vovides AP, Olivares M (1996) Karyotype polymorphism in the cycad Zamia loddigesii (Zamiaceae) of the Yucatan Peninsula, Mexico. Bot. J. Linn. Soc. 120: 77–83. https://doi.org/10.1111/j.1095-8339.1996.tb00481.x10.1111/j.1095-8339.1996.tb00481.xSearch in Google Scholar

Wu H, Ma Z, Wang MM, Qin AL, Ran JH,Wang XQ (2016) A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features. Molecular Ecology 25: 1192-210. https://doi.org/10.1111/mec.1353810.1111/mec.13538716840326800145Search in Google Scholar

Zonneveld BJM (2011) Pine nut syndrome: a simple test for genome size of 12 pine nut-producing trees links the bitter aftertaste to nuts of P. armandii Zucc.exEndl. Plant Systematics and Evolution 297: 201-206 https://doi.org/10.1007/s00606-011-0507-210.1007/s00606-011-0507-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo