1. bookVolume 67 (2018): Issue 1 (February 2018)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata Bork., and Quercus rubra L.

Published Online: 31 Dec 2018
Volume & Issue: Volume 67 (2018) - Issue 1 (February 2018)
Page range: 127 - 132
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

Due to ongoing climate change, forests are exposed to changing environmental conditions, such as increasing temperatures and lower precipitation, to which trees have to adapt. Successful adaptation to changing and variable environments requires sufficient genetic variation within tree populations. Knowledge of the genetic variation of trees is therefore essential, as it provides information for the long-term conservation, stability and productivity of forests. The genetic variation of a species can be analysed with molecular markers. Despite growing genomic and genetic resources for European beech (Fagus sylvatica L.), which is one of the economically and ecologically most important forest tree species in Central Europe, the number of molecular markers for population genetic analyses is still limited. Therefore, the aim of the work is the development of new EST-SSR markers for this species. A total of 72 DNA samples of European beech from three widely separated regions in Germany were used to test 41 primers for variation and polymorphism, 35 of which were originally developed for American beech (Fagus grandifolia Ehrh.) and 6 for red oak (Quercus rubra L.). Fifteen of the primers were polymorphic, 13 monomorphic and 13 did not amplify. In addition, the transferability of the markers was successfully tested in the related species Castanea dentata Bork., Fagus orientalis Lipsky and Q. rubra. The EST-SSR markers tested in this study will be useful for future population genetic analyses and extend the set of available markers in European beech.

Keywords

Aldrich PR, Jagtap M, Michler CH, Romeo-Severson J (2003) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genetica 52(3-4): 176-179 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3): 403-410. https://doi.org/10.1016/S0022-2836(05)80360-210.1016/S0022-2836(05)80360-2Open DOISearch in Google Scholar

Barreneche T, Casasoli M, ussell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea us­ing simple-sequence repeats (SSRs). Theoretical and Applied Genetics 108: 558-566. https://doi.org/10.1007/s00122-003-1462-210.1007/s00122-003-1462-214564395Open DOISearch in Google Scholar

Brown GR, Kadel III EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159: 799-80910.1093/genetics/159.2.799146182111606554Search in Google Scholar

Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T (2007) Genetic diver­sity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. Forest Ecology and Management 247: 98-106. https://doi.org/10.1016/j.foreco.2007.04.01810.1016/j.foreco.2007.04.018Open DOISearch in Google Scholar

Buonaccorsi VP, Kimbrell CA, Lynn EA, Hyde JR (2012) Comparative population genetic analysis of Bocaccio Rockfish Sebastes paucispinis using anonymous and gene-sssociated Simple Sequence Repeat loci. Journal of Heredity 103 (3): 391-399. https://doi.org/10.1093/jhered/ess00210.1093/jhered/ess00222490232Open DOISearch in Google Scholar

Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends be­tween heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157: 389-39710.1093/genetics/157.1.389146149511139519Search in Google Scholar

Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50: 2515-2520. https://doi.org/10.1111/j.1558-5646.1996.tb03638.x10.1111/j.1558-5646.1996.tb03638.x28565658Open DOISearch in Google Scholar

Dounavi A, Netzer F, Celepirovic N, Ivankovic M, Burger J, Figueroa AG, Schön S, Simon J, Cremer E, Fussi B, Konnert M, Rennenberg H (2016) Genetic and physiological differences of European beech provenances (F. sylvatica L.) exposed to drought stress. Forest Ecology and Management 361: 226-236. https://doi.org/10.1016/j.foreco.2015.11.01410.1016/j.foreco.2015.11.014Open DOISearch in Google Scholar

Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumolin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010). A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11(570): 1-13. https://doi.org/10.1186/1471-2164-11-57010.1186/1471-2164-11-570309171920950475Open DOISearch in Google Scholar

Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2): 125-32. https://doi.org/10.1038/sj.hdy.680100110.1038/sj.hdy.680100117519965Open DOISearch in Google Scholar

Fang J, Lechowicz M (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogegraphy 33: 1804- 1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x10.1111/j.1365-2699.2006.01533.xOpen DOISearch in Google Scholar

Gailing O, von Wühlisch G (2004) Nuclear markers (AFLPs) and chloroplast mi­crosatellites differ between Fagus sylvatica and F. orientalis. Silvae Genetica 53(3): 105-110. https://doi.org/10.1515/sg-2004-001910.1515/sg-2004-0019Open DOISearch in Google Scholar

Gailing O, Langenfeld-Heysert R, Polle A, Finkeldey R (2008) Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaption to changing environments. Global Change Biol­ogy 14: 1934- 1946. https://doi.org/10.1111/j.1365-2486.2008.01621.x10.1111/j.1365-2486.2008.01621.xOpen DOISearch in Google Scholar

Goudet J (2002) Software Fstat 2.9.3. Department of Ecology & Evolution, Biolo­gy Building, Lausanne University [online]. Available at <https://www2.unil.ch/popgen/softwares/fstat.htm> [cited 04/15/2018]Search in Google Scholar

Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources 11: 591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x10.1111/j.1755-0998.2011.03014.x21565126Open DOISearch in Google Scholar

Harmon M, Lane T, Staton M, Coggeshall MV, Best T, Chen C-C, Liang H, Zem­bower N, Drautz-Moses DI, Hwee YZ, Schuster SC, Schlarbaum SE, Carlson JE, Gailing O (2017) Development of novel genic microsatellite markers from transcriptome sequencing in sugar maple (Acer saccharum Marsh.). BMC Research Notes 10(369): 1-7. https://doi.org/10.1186/s13104-017-2653-210.1186/s13104-017-2653-2554931628789702Search in Google Scholar

Kölling C, Zimmermann L (2007) Die Anfälligkeit der Wälder Deutschlands ge­genüber dem Klimawandel. Klimaschutz 67(6): 259-268Search in Google Scholar

Kubisiak T, Carey D, Burdine C, Koch J (2009) Characterization of ten EST-based polymorphic SSR loci isolated from American beech, Fagus grandifolia Ehrh. Permanent Genetic Resources Note added to Molecular Ecology Resources Volume: 1-8. https://doi.org/10.1111/j.1755-0998.2009.02759.x10.1111/j.1755-0998.2009.02759.x21564933Open DOISearch in Google Scholar

Lalagüe H, Csilléry K, Oddou-Muratorio S, Safrana J, de Quattro C, Fady B, González-Martínez SC, Vendramin GG (2014) Nucleotide diversity and link­age disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France. Tree Genetics & Genomes 10: 15-26. https://doi.org/10.1007/s11295-013-0658-010.1007/s11295-013-0658-0Open DOISearch in Google Scholar

Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé J-C, Kremer A, Plomion C, le Provost G (2015) A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Molecular Ecology Resources 15: 1-13. https://doi.org/10.1111/1755-0998.1237310.1111/1755-0998.1237325594128Open DOISearch in Google Scholar

Liesebach H (2012) Genotypisierung mit nuklearen Mikrosatellitenmarkern - Möglichkeiten der Daten-auswertung am Beispiel von Buchenpopula­tionen (Fagus sylvatica L.) aus einem Herkunftsversuch. Applied Agricultural and Forestry Research 4:221-236.Search in Google Scholar

Mishra B, Gupta DK, Pfenninger M, Hickler T, Langer E, Nam B, Paule J, Sharma R, Ulaszewski B, Warmbier J, Burczyk J, Thines M (2018) A reference genome of the European beech (Fagus sylvatica L.). GigaScience 7: 1-8. https://doi.org/10.1093/gigascience/giy06310.1093/gigascience/giy063601418229893845Open DOISearch in Google Scholar

Müller M, Seifert S, Finkeldey R (2015) Identification of SNPs in candidate genes potentially involved in bud burst in European beech (Fagus sylvatica L.) Silvae Genetica 64: 1-20. https://doi.org/10.1515/sg-2015-000110.1515/sg-2015-0001Open DOISearch in Google Scholar

Müller M, Seifert S, Lübbe T, Leuschner C, Finkeldey R (2017) De novo transcrip­tome assembly and analysis of differential gene expression in response to drought in European beech. PLoS one 12(9): 1-20. https://doi.org/10.1371/journal.pone.018416710.1371/journal.pone.0184167558480328873454Open DOISearch in Google Scholar

Paffetti D, Travaglini D, Buonamici A, Nocentini S, Vendramin GG, Giannini R, Vet­tori C (2012) The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. Forest Ecology and Management 284: 34-44. https://doi.org/10.1016/j.foreco.2012.07.02610.1016/j.foreco.2012.07.026Open DOISearch in Google Scholar

Pastorelli R, Smulders MJM, van’t West-Ende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Molecular Ecology Notes 3: 76-78. https://doi.org/10.1046/j.1471-8286.2003.00355.x10.1046/j.1471-8286.2003.00355.xOpen DOISearch in Google Scholar

Paule L (1995) Gene conservation in European beech (Fagus sylvatica L.). Forest Genetics 2(3): 161-170 Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1): 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.xOpen DOISearch in Google Scholar

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460346324522820204Open DOISearch in Google Scholar

Rajendra KC, Seifert S, Prinz K, Gailing O, Finkeldey R (2014) Subtle human im­pacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica). Forest Ecology and Management 319: 138-149. https://doi.org/10.1016/j.foreco.2014.02.00310.1016/j.foreco.2014.02.003Open DOISearch in Google Scholar

Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x10.1111/j.1471-8286.2007.01931.x21585727Search in Google Scholar

Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18(2): 233-234. https://doi.org/10.1038/7270810.1038/7270810657137Open DOISearch in Google Scholar

Shanjani PS, Vendramin GG, Calagari M (2010) Genetic diversity and differentia­tion of Fagus orientalis Lipsky in Hyrcanian forests revealed by nuclear and chloroplast microsatellite markers. Conservation Genetics 11(6): 2321-2331. https://doi.org/10.1007/s10592-010-0118-410.1007/s10592-010-0118-4Open DOISearch in Google Scholar

Steinkellner H, Lexer C, Turetschek E, Glössl J (1997) Conservation of (GA)n mi­crosatellite loci between Quercus species. Molecular Ecology 6: 1189-1194. https://doi.org/10.1046/j.1365-294X.1997.00288.x10.1046/j.1365-294X.1997.00288.xOpen DOISearch in Google Scholar

Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of mi­crosatellite markers for Fagus crenata and the closely related species, F. japonica. Theoretical and Applied Genetics 99: 11-15 The Uniprot Consortium (2017) UniProt: the universal protein knowledgebase. Nucleid Acids Research 45: 158- 169. https://doi.org/10.1093/nar/gkw109910.1093/nar/gkw1099521057127899622Open DOISearch in Google Scholar

Ueno S, Taguchi Y, Tomaru N, Tsumura Y (2009) Development of EST-SSR markers from an inner bark cDNA library of Fagus crenata (Fagaceae). Conservation Genetics 10: 1477-1485. https://doi.org/10.1007/s10592-008-9764-110.1007/s10592-008-9764-1Search in Google Scholar

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x10.1111/j.1471-8286.2004.00684.xOpen DOISearch in Google Scholar

Vornam B, Decarli N, Gailing O (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L.) based on microsatellite markers. Conversations Genetics 5: 561-570. https://doi.org/10.1023/b:coge.0000041025.82917.ac .10.1023/b:coge.0000041025.82917.acOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo