1. bookVolume 71 (2021): Issue 2 (November 2021)
Journal Details
License
Format
Journal
eISSN
2450-5471
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Reality and Vision of the Architecture for Cogeneration Plants for Energy Recovery

Published Online: 07 Dec 2021
Volume & Issue: Volume 71 (2021) - Issue 2 (November 2021)
Page range: 131 - 140
Journal Details
License
Format
Journal
eISSN
2450-5471
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

Energetics is connected with industry development of the country and determines its geographic layout into certain extent. This fact defines an important and also priority position of energetics in a developed society. On the other side it evokes trying to reach sustainability of the environment and nowadays also trying to reach decreasing of the carbon footprint of human activities. The goal of the article is to present general criteria for localisation of energetic cogeneration plants on biogass base, factors presentation and confrontation of current examples and new trends in shaping architecture under the influence of the development of modern technique and technology. The article analyses mass-composition and architectonic aspects of energetic plants of the chosen performed examples and on the model studies it documents the vision of new solutions on the background of equal, non-invasive and eco-friendly architecture in the surroundings.

Keywords

[1] Patrascu, R., Minciuc, E., Diaconescu, L. “Evaluation of the environmental impact of a cogeneration plant for an urban area”, In: Thomas, G., Fleaurant, C., Panagopoulos, T., Chevassus-Lozza, T., Zaharim, A., Sopian, K. (eds.) Recent Researches in Energy, Environment and Landscape Architecture, WSEAS Press, Angers, France, pp. 118-121, 2011. Search in Google Scholar

[2] Špaček, R. “Energia je fyzika, biológia, ekonómia aj poézia”, Eurostav, s.r.o., Bratislava, Slovakia, 12(1), pp. 22, 2006. ISSN 1335-1249. (in Slovak) Search in Google Scholar

[3] Golušin, M., Dodić, S., Popov, S. “Strategic Priorities of Sustainable Energy Development“, In: Golušin, M., Dodić, S., Popov, S. (eds.) Sustainable Energy Management, Academic Press, Elsevier, pp. 243 – 333, 2013. DOI: 10.1016/B978-0-12-415978-5.00007-210.1016/B978-0-12-415978-5.00007-2 Search in Google Scholar

[4] David, A., Thangavel, Y. D., Sankriti, R. “Recover, Recycle And Reuse: An Efficient Way To Reduce The Waste“, International Journal of Mechanical and Production Engineering Research and Development. 9(3), pp. 31 – 42, 2019. DOI: 10.24247/ijmperdjun20194.10.24247/ijmperdjun20194 Search in Google Scholar

[5] Lovins, A. B. “Soft energy paths: Towards a Durable Peace“, 1th ed., Friends of the Earth International, San Francisco, 1977, 231 p. ISBN 0-06-090653-7. Search in Google Scholar

[6] Kadrnožka, J. “Tepelné elektrárny a teplárny“, 1th ed., SNTL, Praha, 1984, 607 p. (in Czech) Search in Google Scholar

[7] Hlaváček, E. “Architektura pohybu a proměn“, 1th ed., Odeon, Praha, 1985, 167 p. (in Czech) Search in Google Scholar

[8] Balák, R. “Nové zdroje energie“, 1th ed., SNTL, Praha, 1989, 208 p. ISBN 04-312-89. (in Czech) Search in Google Scholar

[9] Šoch, J. “Výzkum a vývoj energetických zdrojů třetího tisíciletí“, 1th ed., In: Obnovitelné zdroje energie, FCC PUBLIC, Praha, pp. 7-15, 1994. (in Czech) Search in Google Scholar

[10] Ilkovič, J., Meziani, Y., Ilkovičová, Ľ. “Architektúra energetických výrobní na báze plynu“, 1th ed., Nakladateľstvo STU, Bratislava, 2011, 168 p. ISBN 978- 80-227-3632-9. (in Slovak) Search in Google Scholar

[11] Baldwin, E. “World’s Largest Waste-to-Energy Plant Set to Open Next Year in Shenzhen“, [online] Available at: https://www.archdaily.com/909843/worlds-largest-waste-to-energy-plant-set-to-open-next-year-in-shenzhen/ [Accessed: 18 November 2021]. Search in Google Scholar

[12] Ilkovič, J. “Nové trendy vo výstavbe energetických zariadení“, Stavba, Bratislava, Slovakia, 5(2) pp. 17 – 21, 2002. ISSN 1335-5406. (in Slovak) Search in Google Scholar

[13] Chríbik A., Polóni, M., Minárik, M. “Use of Methane-Free Synthesis Gases as Fuel in an Spark Ignition Combustion Engine“, Strojnícky časopis – Journal of Mechanical Engineering 70 (2), pp. 37 – 48, 2020. DOI: 10.2478/scjme-2020-001810.2478/scjme-2020-0018 Search in Google Scholar

[14] Chríbik A., Polóni, M., Minárik, M. “Influence of Selected Synthesis Gas Component on Internal Parameters of Combustion Engine“, Strojnícky časopis – Journal of Mechanical Engineering, 69 (4), pp. 25 – 32, 2019. DOI: 10.2478/scjme-2019-004010.2478/scjme-2019-0040 Search in Google Scholar

[15] Harrison, J. “What is Microgeneration? And what is the most cost effective in terms of CO2 reduction“, [online] Available at: https://claverton-energy.com/what-ismicrogeneration.html [Accessed: 6 November 2008]. Search in Google Scholar

[16] Pehnt, M. “Environmental impacts of distributed energy systems - The case of micro cogeneration“, Environmental Science & Policy, 11(1), pp. 25 – 37, 2008. DOI: 10.1016/j.envsci.2007.07.00110.1016/j.envsci.2007.07.001 Search in Google Scholar

[17] Gottlieb Paludan Architects, “Amager Power Station, BIO4“, [online] Available at: https://www.gottliebpaludan.com/en/news/architecture [Accessed: 5 October 2020]. Search in Google Scholar

[18] Howarth, D. “Abandoned concrete bunker converted into a green power plant by IBA Hamburg“, [online] Available at: https://www.dezeen.com/2014/02/14/abandoned-concrete-bunker-converted-into-a-green-power-plant-by-iba-hamburg/ [Accessed: 14 February 2014]. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo