Open Access

Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory


[1] Abdelbaki, C., Ahmed, B., Houari, H., Mohammed Sid Ahmed, H., Abdelouahed, T., E. A., A. B. “Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory”, Structural Engineering and Mechanics 57 (4), pp. 617 – 639, 2016. DOI: 10.12989/sem.2016.57.4.61710.12989/sem.2016.57.4.617Search in Google Scholar

[2] Choudhury, A., Mondal, S. C., Sarkar, S. “Effect of lamination angle and thickness on analysis of composite plate under thermo mechanical loading”, Strojnícky časopis – Journal of Mechanical Engineering 67 (1), pp. 5 – 22, 2017. DOI: 10.1515/scjme-2017-000110.1515/scjme-2017-0001Open DOISearch in Google Scholar

[3] Abdelbaki, C., Abdelouahed, T., Habib, H., S. R, M. “Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT”, Smart Structures and Systems 19 (3), pp. 289 – 297, 2017. DOI: 10.12989/sss.2017.19.3.28910.12989/sss.2017.19.3.289Search in Google Scholar

[4] Ebrahimi, F., Barati, M. R. “On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates”, Advances in Nano Research 7 (1), pp. 63 – 75, 2019. DOI: 10.12989/anr.2019.7.1.063Search in Google Scholar

[5] Ebrahimi, F., Heidari, E. “Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position”, Advances in Aircraft and Spacecraft Science 5 (6), pp. 691 – 729, 2018. DOI: http:10.12989/aas.2018.5.6.691Search in Google Scholar

[6] Elmerabet, A. H., Heireche, H., Tounsi, A., Semmah, A. “Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model”, Advances in nano research 5 (1), pp. 1 – 12, 2017. DOI: 10.12989/anr.2017.5.1.00110.12989/anr.2017.5.1.001Search in Google Scholar

[7] Elmossouess, B., Kebdani, S., Bouiadjra, M. B., Tounsi, A. “A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates”, Structural Engineering and Mechanics 62 (4), pp. 401 – 415, 2017. DOI: 10.12989/sem.2017.62.4.40110.12989/sem.2017.62.4.401Search in Google Scholar

[8] Houari, M. S. A., Tounsi, A., Bessaim, A., Mahmoud, S. R. “A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates”, Steel and Composite Structures 22 (2), pp. 257 – 276, 2016. DOI: 10.12989/scs.2016.22.2.25710.12989/scs.2016.22.2.257Search in Google Scholar

[9] Karami, B., Karami, S. “Buckling analysis of nanoplate - type temperature - dependent heterogeneous materials”, Advances in Nano Research 7 (1), pp. 51 – 61, 2019. DOI: 10.12989/anr.2019.7.1.051Search in Google Scholar

[10] Mahjoobi, M., Bidgoli, M. R. “Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods”, Structural Engineering and Mechanics 69 (5), pp. 547 – 555, 2019. DOI: 10.12989/sem.2019.69.5.547Search in Google Scholar

[11] Mohamed, B., Abed, B., Abdelmoumen Anis, B., Amel, S., Fouad, B., Abdelouahed, T., and S.R, M. “Buckling behavior of rectangular plates under uniaxial and biaxial compression”, Structural Engineering and Mechanics, 70 (1), pp. 113 – 123, 2019. DOI: 10.12989/sem.2019.70.1.113Search in Google Scholar

[12] Mokhtar, N., Hassen, A. A., Riadh, B., Abdelouahed, T., E.A, A. B. “Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT”, Structural Engineering and Mechanics 69 (5), pp. 511 – 525, 2019. DOI: 10.12989/sem.2019.69.5.511Search in Google Scholar

[13] Mokhtar, Y., Heireche, H., Bousahla, A. A., Houari, M. S. A., Tounsi, A., Mahmoud, S. R. “A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory”, Smart Structures Systems 21 (4), pp. 397 – 405, 2018. DOI: 10.12989/sss.2018.21.4.397Search in Google Scholar

[14] Sadoun, M., Houari, M. S. A., Bakora, A., Tounsi, A., Mahmoud, S. R., Alwabli, A. S. “Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory”, Geomechanics and Engineering 16 (2), pp.141 – 150, 2018. DOI: 10.12989/gae.2018.16.2.141Search in Google Scholar

[15] Salari, E., Ashoori, A., and Vanini, S. A. S. “Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate”, Advances in Nano Research 7 (1), pp. 25 – 38, 2019. DOI: 10.12989/anr.2019.7.1.025Search in Google Scholar

[16] Shafiei, H., Setoodeh, A. R. “Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation”, Steel and Composite Structures 24 (1), pp. 65 – 77, 2017. DOI: 10.12989/scs.2017.24.1.06510.12989/scs.2017.24.1.065Search in Google Scholar

[17] Shokravi, M. “Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory”, Steel and Composite Structures 23 (6), pp. 623 – 631, 2017. DOI: 10.12989/scs.2017.23.6.623Search in Google Scholar

[18] Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A. A., Mahmoud, S. R. “Vibration analysis of different material distributions of functionally graded microbeam”, Structural Engineering and Mechanics 69 (6), pp. 637 – 649, 2019. DOI: 10.12989/sem.2019.69.6.637Search in Google Scholar

[19] Tounsi, A., Houari, M. S. A., Bessaim, A. “A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate”, Structural Engineering and Mechanics 60 (4), pp. 547 – 565, 2016. DOI: 10.12989/sem.2016.60.4.54710.12989/sem.2016.60.4.547Search in Google Scholar

[20] Tu, T. M., Quoc, T. H., Long, N. V. “Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory”, Structural Engineering and Mechanics 62 (3), pp. 311 – 324, 2017. DOI: 10.12989/sem.2017.62.3.31110.12989/sem.2017.62.3.311Search in Google Scholar

[21] Bocko, J., Lengvarský, P., Šarloši, J. “Buckling analysis of hetero-junction carbon nanotubes”, Strojnícky časopis – Journal of Mechanical Engineering 68 (2), pp. 9 – 16, 2018. DOI: 10.2478/scjme-2018-001310.2478/scjme-2018-0013Open DOISearch in Google Scholar

[22] Bocko, J., Lengvarský, P., Pástor, M. “Estimation of Material Properties of Carbon Nanotubes Using Finite Element Method”, Strojnícky časopis – Journal of Mechanical Engineering 69 (2), pp. 7 – 14, 2019. DOI: 10.2478/scjme-2019-001410.2478/scjme-2019-0014Open DOISearch in Google Scholar

[23] Kugler, S., Fotiu, P., Murín, J. “On the Access to Transverse Shear Stiffnesses and to Stiffness Quantities for Non-Uniform Warping Torsion in FGM Beam Structures”, Strojnícky časopis – Journal of Mechanical Engineering 69 (2), pp. 27 – 56, 2019. DOI: 10.2478/scjme-2019-001610.2478/scjme-2019-0016Open DOISearch in Google Scholar

[24] Murín, J., Aminbaghai, M., Hrabovský, J. “Elastostatic analysis of the spatial FGM structures”, Strojnícky časopis – Journal of Mechanical Engineering 65(1), pp. 27 – 56, 2015. DOI: 10.1515/scjme-2016-000310.1515/scjme-2016-0003Open DOISearch in Google Scholar

[25] Sapountzakis, E., Argyridi, A. “Influence of in-Plane Deformation in Higher Order Beam Theories”, Strojnícky casopis–Journal of Mechanical Engineering 68 (3), pp. 77 – 94, 2018. DOI: 10.2478/scjme-2018-002810.2478/scjme-2018-0028Open DOISearch in Google Scholar

[26] Ansari, R., Norouzzadeh, A. “Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis”, Physica E: Low-Dimensional Systems and Nanostructures 84, pp. 84 – 97, 2016. DOI: 10.1016/j.physe.2016.05.03610.1016/j.physe.2016.05.036Open DOISearch in Google Scholar

[27] Banh-Thien, T., Dang-Trung, H., Le-Anh, L., Ho-Huu, V., Nguyen-Thoi, T. “Buckling analysis of non-uniform thickness nanoplates in an elastic medium using the isogeometric analysis”, Composite Structures 162, pp. 182 – 193, 2017. DOI: 10.1016/j.compstruct.2016.11.09210.1016/j.compstruct.2016.11.092Open DOISearch in Google Scholar

[28] Ghadiri, M., Shafiei, N., Alavi, H. “Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method”, Mechanics of Advanced Materials and Structures 24 (8), pp. 636 – 646, 2017. DOI: 10.1080/15376494.2016.119677010.1080/15376494.2016.1196770Search in Google Scholar

[29] Liu, C., Ke, L.-L., Yang, J., Kitipornchai, S., Wang, Y.-S. “Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates”, Theoretical and Applied Mechanics Letters 6 (6), pp. 253 – 267, 2016. DOI: 10.1016/j.taml.2016.10.00310.1016/j.taml.2016.10.003Open DOISearch in Google Scholar

[30] Arefi, M., Zenkour, A. M. “Thermo-electro-magneto-mechanical bending behavior of size-dependent sandwich piezomagnetic nanoplates”, Mechanics Research Communications 84, pp. 27 – 42, 2017. DOI: 10.1016/j.mechrescom.2017.06.00210.1016/j.mechrescom.2017.06.002Open DOISearch in Google Scholar

[31] Askari, H., Jamshidifar, H., Fidan, B. “High resolution mass identification using nonlinear vibrations of nanoplates”, Measurement 101, pp. 166 – 174, 2017. DOI: 10.1016/j.measurement.2017.01.01210.1016/j.measurement.2017.01.012Open DOISearch in Google Scholar

[32] Barati, M. R., Shahverdi, H. “Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory”, Composite Structures 176, pp. 982 – 995, 2017. DOI: 10.1016/j.compstruct.2017.06.00410.1016/j.compstruct.2017.06.004Open DOISearch in Google Scholar

[33] Bochkarev, A. “Influence of boundary conditions on stiffness properties of a rectangular nanoplate”, Procedia Structural Integrity 6, pp. 174 – 181, 2017. DOI: 10.1016/j.prostr.2017.11.02710.1016/j.prostr.2017.11.027Open DOISearch in Google Scholar

[34] Ebrahimi, F., Barati, M. R. “Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects.” Mechanics of Advanced Materials and Structures 25 (7), pp. 611 – 621, 2018. DOI: 10.1080/15376494.2017.128546410.1080/15376494.2017.1285464Open DOISearch in Google Scholar

[35] Farrokhabadi, A., Tavakolian, F. “Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces”, Applied Mathematical Modelling 50, pp. 604 – 620, 2017. DOI: 10.1016/j.apm.2017.06.01710.1016/j.apm.2017.06.017Open DOISearch in Google Scholar

[36] Karličić, D., Cajić, M., Adhikari, S., Kozić, P., Murmu, T. “Vibrating nonlocal multi-nanoplate system under inplane magnetic field”, European Journal of Mechanics - A/Solids 64, pp. 29 – 45, 2017. DOI: 10.1016/j.euromechsol.2017.01.01310.1016/j.euromechsol.2017.01.013Open DOISearch in Google Scholar

[37] Nematollahi, M. S., Mohammadi, H., Nematollahi, M. A. “Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach”, Superlattices and Microstructures 111, pp. 944 – 959, 2017. DOI: 10.1016/j.spmi.2017.07.05510.1016/j.spmi.2017.07.055Open DOISearch in Google Scholar

[38] Satish, N., Narendar, S., Brahma Raju, K. “Magnetic field and surface elasticity effects on thermal vibration properties of nanoplates”, Composite Structures 180, pp. 568 – 580, 2017. DOI: 10.1016/j.compstruct.2017.08.02810.1016/j.compstruct.2017.08.028Open DOISearch in Google Scholar

[39] Shahverdi, H., Barati, M. R. “Vibration analysis of porous functionally graded nanoplates”, International Journal of Engineering Science 120, pp. 82 – 99, 2017. DOI: 10.1016/j.ijengsci.2017.06.00810.1016/j.ijengsci.2017.06.008Open DOISearch in Google Scholar

[40] Yang, W. D., Yang, F. P., Wang, X. “Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect”, International Journal of Mechanical Sciences 126, pp. 12 – 23, 2017. DOI: 10.1016/j.ijmecsci.2017.03.01810.1016/j.ijmecsci.2017.03.018Open DOISearch in Google Scholar

[41] Zhang, L., Guo, J., Xing, Y. “Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect”, International Journal of Solids and Structures 132–133, pp. 278–302, 2018. DOI: 10.1016/j.ijsolstr.2017.10.02010.1016/j.ijsolstr.2017.10.020Open DOISearch in Google Scholar

[42] Ansari, R., Torabi, J., Norouzzadeh, A. “Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method”, Physica B: Condensed Matter 534, pp. 90 – 97, 2018.10.1016/j.physb.2018.01.025Search in Google Scholar

[43] Chen, T., Ye, Y., Li, Y. “Investigations on structural intensity in nanoplates with thermal load.” Physica E: Low-dimensional Systems and Nanostructures 103, pp. 1 – 9, 2018. DOI: 10.1016/j.physb.2018.01.02510.1016/j.physb.2018.01.025Open DOISearch in Google Scholar

[44] Mohseni, E., Saidi, A. R., Mohammadi, M. “Vibration Analysis of Thick Functionally Graded Micro-plates Using HOSNDPT and Modified Couple Stress Theory”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 4 (13), pp. 1–11, 2018. DOI: 10.1007/s40997-018-0185-610.1007/s40997-018-0185-6Open DOISearch in Google Scholar

[45] Karami, B., Janghorban, M., Li, L. “On guided wave propagation in fully clamped porous functionally graded nanoplates”, Acta Astronautica 143, pp. 380 – 390, 2018. DOI: 10.1016/j.actaastro.2017.12.01110.1016/j.actaastro.2017.12.011Open DOISearch in Google Scholar

[46] Yang, L., Li, Y., Gao, Y., Pan, E. “Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates”, Applied Mathematical Modelling 63, pp. 203 – 218, 2018. DOI: 10.1016/j.apm.2018.06.05010.1016/j.apm.2018.06.050Open DOISearch in Google Scholar

[47] Lin, M.-X., Lee, S.-Y., Chen, C.-K. “Dynamic characteristic analysis of an electrostatically-actuated circular nanoplate subject to surface effects”, Applied Mathematical Modelling 63, pp. 18 – 31, 2018. DOI: 10.1016/j.apm.2018.06.00410.1016/j.apm.2018.06.004Open DOISearch in Google Scholar

[48] Pang, M., Li, Z. L., Zhang, Y. Q. “Size-dependent transverse vibration of viscoelastic nanoplates including high-order surface stress effect”, Physica B: Condensed Matter 545, pp. 94 – 98, 2018. DOI: 10.1016/j.physb.2018.06.00210.1016/j.physb.2018.06.002Open DOISearch in Google Scholar

[49] Norouzzadeh, A., Ansari, R. “Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects”, Thin-Walled Structures 127, pp. 354 – 372, 2018. DOI: 10.1016/j.tws.2017.11.04010.1016/j.tws.2017.11.040Open DOISearch in Google Scholar

[50] Shahrbabaki, E. A. “On three-dimensional nonlocal elasticity: Free vibration of rectangular nanoplate”, European Journal of Mechanics - A/Solids 71, pp. 122 – 133, 2018. DOI: 10.1016/j.euromechsol.2018.03.00410.1016/j.euromechsol.2018.03.004Open DOISearch in Google Scholar

[51] Zenkour, A. M. “A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates”, Composite Structures 185, pp. 821 – 833, 2018. DOI: 10.1016/j.compstruct.2017.10.08510.1016/j.compstruct.2017.10.085Open DOISearch in Google Scholar

[52] Belkorissat, I., Houari, M. S. A., Tounsi, A., Bedia, E. A., Mahmoud, S. R. “On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model”, Steel Compos. Struct 18 (4), pp. 1063 – 1081, 2015. DOI: 10.12989/scs.2015.18.4.106310.12989/scs.2015.18.4.1063Search in Google Scholar

[53] Zargaripoor, A., Daneshmehr, A., Hosseini, I. I., Rajabpoor, A. “Free Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method”, Journal of Computational Applied Mechanics 49 (1), pp. 86 – 101, 2018. DOI: 10.22059/JCAMECH.2018.248906.223Search in Google Scholar

[54] Eringen, A. C. “Nonlocal continuum field theories”, Springer, New York, 2002.Search in Google Scholar

[55] Sobhy, M., Alotebi, M. S. “Transient Hygrothermal Analysis of FG Sandwich Plates Lying on a visco-Pasternak Foundation via a Simple and Accurate Plate Theory.” Arabian Journal for Science and Engineering 43 (10), pp. 5423 – 5437, 2018. DOI: 10.1007/s13369-018-3142-110.1007/s13369-018-3142-1Search in Google Scholar

[56] Aghababaei, R., Reddy, J. N. “Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates”, Journal of Sound and Vibration 326 (1 – 2), pp. 277 – 289, 2009. DOI: 10.1016/j.jsv.2009.04.04410.1016/j.jsv.2009.04.044Open DOISearch in Google Scholar

Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics