Open Access

Methods of Testing of Sound Insulation Properties of Barriers Intended for High Frequency Noise and Ultrasonic Noise Protection


Cite

[1] M. Hlavatý, L. Starek, M. Musil, B. Hučko. Ultrasonic defect detection of structural plates using Quasi-Rayleigh waves. Journal of Mechanical EngineeringStrojnícky časopis 2017 (67), No. 2, 37 – 50. Search in Google Scholar

[2] D. Augustyńska, M. Pośniak [Eds.]. Hazardous factors in working environment. Admissible values [in Polish]. Centralny Instytut Ochrony Pracy-Państwowy Instytut Badawczy, Warsaw, 2012. Search in Google Scholar

[3] D. Augustyńska, W. M. Zawieska [Eds.]. Noise and vibration prevention in working environment [in Polish] Centralny Instytut Ochrony Pracy-Panstwowy Instytut Badawczy, Warsaw, 1999. Search in Google Scholar

[4] B. Smagowska. Ultrasonic noise sources in a work environment. Archives of Acoustics 2013 (38), No. 2, 169 – 176. Search in Google Scholar

[5] B. Smagowska, W. Mikulski. Ultrasonic noise at workstations with ultrasonic drills – occupational risk assessment, [in Polish]. Bezpeczeństwo Pracy-Nauka i Praktyka 2008, No. 10, 18 – 22. Search in Google Scholar

[6] B. Smagowska. Ultrasonic noise at workstations with machinery and devices with air compression [in Polish]. Bezpieczeństwo Pracy-Nauka i Praktyka 2011, No. 7 – 8, 38 – 41. Search in Google Scholar

[7] Minister of Labour and Social Policy Regulation of 6 June 2014 on the maximum admissible concentration and intensities for agents harmful to health in the working environment [in Polish]. Journal of Laws 2014, No. 200, item 2047. Search in Google Scholar

[8] D. Pleban. Methods of determination of sound absorption properties of materials in frequency range above 4000 Hz. Proc. INTER-NOISE 2012, 2012. Search in Google Scholar

[9] D. Pleban. Method of testing of sound absorption properties of materials intended for ultrasonic noise protection. Archive of Acoustics 2013 (38), No. 2, 191 – 195. Search in Google Scholar

[10] W. Mikulski. Method of determining the sound absorbing coefficient of materials within the frequency range of 5000-50000 Hz in a test chamber of a volume of about 2 m3. Archives of Acoustics 2013 (38), No. 2, 177 – 183. Search in Google Scholar

[11] A. Dobrucki, B. Żółtogórski, P. Pruchnicki, R. Bolejko. Sound-absorbing and insulating enclosures for ultrasonic noise. Archives of Acoustics 2010 (35), No. 2, 157 – 164. Search in Google Scholar

[12] B. Smagowska, W. Mikulski, I. Jakubowska. Sound absorbing materials for collective protections against ultrasonic noise research results [in Polish]. Bezpieczeństwo Pracy-Nauka i Praktyka 2014, No. 5, 24 – 26. Search in Google Scholar

[13] EN ISO 10140-1:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 1: Application rules for specific products. Search in Google Scholar

[14] EN ISO 10140-2:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 2: Measurement of airborne sound insulation. Search in Google Scholar

[15] EN ISO 10140-3:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 3: Measurement of impact sound insulation. Search in Google Scholar

[16] EN ISO 10140-4:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 4: Measurement procedures and requirements. Search in Google Scholar

[17] EN ISO 10140-5:2010 Acoustics - Laboratory measurement of sound insulation of building elements - Part 5: Requirements for test facilities and equipment. Search in Google Scholar

eISSN:
2450-5471
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics