Open Access

Latitudinal pattern of abundance and composition of ciliate communities in the surface waters of the Atlantic Ocean


Cite

[1] Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 76: 387–396. http://dx.doi.org/10.1002/iroh.1991076031110.1002/iroh.19910760311 Search in Google Scholar

[2] Beers, J.R., Reid F.M.H. & Stewart G.L. (1982). Seasonal abundance of the microzooplankton population in the North Pacific Central Gyre. Deep-Sea Res. 29: 227–245. http://dx.doi.org/10.1016/0198-0149(82)90111-X10.1016/0198-0149(82)90111-X Search in Google Scholar

[3] Caron, D.A. & Hutchins D.A. (2013). The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plankton Res. 35: 235–252. DOI: 10.1093/plankt/fbs091. http://dx.doi.org/10.1093/plankt/fbs09110.1093/plankt/fbs091 Search in Google Scholar

[4] Dolan, J.R. & Pierce R.W. (2013). Diversity and distributions of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 214–243). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch10 Search in Google Scholar

[5] Froneman, P.W. (2004). Protozooplankton community structure and grazing impact in the eastern Atlantic sector of the Southern Ocean in austral summer 1998. Deep-Sea Res. Pt. II 51: 2633–2643. DOI: 10.1016/j.dsr2.2004.09.001. http://dx.doi.org/10.1016/j.dsr2.2004.09.00110.1016/j.dsr2.2004.09.001 Search in Google Scholar

[6] Froneman, P.W. & Perissinotto R. (1996). Structure and grazing of the microzooplankton communities of the Subtropical Convergence and a warm-core eddy in the Atlantic sector of the Southern Ocean. Mar. Ecol. Prog. Ser. 135: 237–245. http://dx.doi.org/10.3354/meps13523710.3354/meps135237 Search in Google Scholar

[7] Garcia-Cuetos, L., Moestrup Ø. & Hansen P.J. (2012). Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy. J. Eukaryot. Microbiol. 59: 374–400. DOI: 10.1111/j.1550-7408.2012.00630.x. http://dx.doi.org/10.1111/j.1550-7408.2012.00630.x10.1111/j.1550-7408.2012.00630.x Search in Google Scholar

[8] Gifford, D.J. (1991). The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86. http://dx.doi.org/10.1111/j.1550-7408.1991.tb04806.x10.1111/j.1550-7408.1991.tb04806.x Search in Google Scholar

[9] Hasle, G.R. (1978). The inverted microscope method. In A. Sournia (Ed.), Phytoplankton Manual (pp. 88–96). Paris: Unesco. Search in Google Scholar

[10] Huston, M.A. & Wolverton S. (2009). The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79: 343–377. http://dx.doi.org/10.1890/08-0588.110.1890/08-0588.1 Search in Google Scholar

[11] Leakey, R.J.G., Burkill P.H. & Sleigh M.A. (1996). Planktonic ciliates in the northwestern Indian Ocean: their abundance and biomass in waters of contrasting productivity. J. Plankton Res. 18: 1063–1071. http://dx.doi.org/10.1093/plankt/18.6.106310.1093/plankt/18.6.1063 Search in Google Scholar

[12] Lessard, E.J. & Murrell M.C. (1996). Distribution, abundance and size composition of heterotrophic dinoflagellates and ciliates in the Sargasso Sea near Bermuda. Deep-Sea Res. Pt. I 43: 1045–1065. http://dx.doi.org/10.1016/0967-0637(96)00052-010.1016/0967-0637(96)00052-0 Search in Google Scholar

[13] Liu, H.X., Li G., Tan Y.H., Ke Z.X., Huang J.R. et al. (2013). Latitudinal changes (6°S–20°N) of summer ciliate abundance and species compositions in surface waters from the Java Sea to the South China Sea. Acta Oceanol. Sin. 32: 66–70. DOI: 10.1007/s13131-013-0299-z. http://dx.doi.org/10.1007/s13131-013-0299-z10.1007/s13131-013-0299-z Search in Google Scholar

[14] McManus, G.B. & Santoferrara L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198–213). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch9 Search in Google Scholar

[15] Menden-Deuer, S. & Lessard E. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569–579. http://dx.doi.org/10.4319/lo.2000.45.3.056910.4319/lo.2000.45.3.0569 Search in Google Scholar

[16] Montagnes, D.J.S. & Lynn D.H. (1989). The annual cycle of Mesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. J. Plankton Res. 11: 193–201. http://dx.doi.org/10.1093/plankt/11.2.19310.1093/plankt/11.2.193 Search in Google Scholar

[17] Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2008). Factors controlling the abundance and size distribution of the phototrophic ciliate Myrionecta rubra in open waters of the North Atlantic. J. Eukaryot. Microbiol. 55: 457–465. DOI: 10.1111/j.1550-7408.2008.00344.x. http://dx.doi.org/10.1111/j.1550-7408.2008.00344.x10.1111/j.1550-7408.2008.00344.x Search in Google Scholar

[18] Montagnes, D.J.S., Allen J., Brown L., Bulit C., Davidson R. et al. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411: 101–115. DOI 10.3354/meps08646. http://dx.doi.org/10.3354/meps0864610.3354/meps08646 Search in Google Scholar

[19] Ota, T. & Taniguchi A. (2003). Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea Res. Pt. II 50: 423–442. http://dx.doi.org/10.1016/S0967-0645(02)00461-710.1016/S0967-0645(02)00461-7 Search in Google Scholar

[20] Porter, K.G., Sherr E.B., Sherr B.F., Pace M. & Sanders R.W. (1985). Protozoa in planktonic food webs. J. Protozool. 32: 409–415. http://dx.doi.org/10.1111/j.1550-7408.1985.tb04036.x10.1111/j.1550-7408.1985.tb04036.x Search in Google Scholar

[21] Putt, M. & Stoecker D.K. (1989). An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103. http://dx.doi.org/10.4319/lo.1989.34.6.109710.4319/lo.1989.34.6.1097 Search in Google Scholar

[22] Quevedo, M., Viesca L., Anadón R. & Fernández E. (2003). The protistan microzooplankton community in the oligotrophic north-eastern Atlantic: large- and mesoscale patterns. J. Plankton Res. 25: 551–563. http://dx.doi.org/10.1093/plankt/25.5.55110.1093/plankt/25.5.551 Search in Google Scholar

[23] Rychert, K. (2004). The size structure of Mesodinium rubrum population in the Gdańsk Basin. Oceanologia 46: 439–444. Search in Google Scholar

[24] Rychert, K., Spich K., Laskus K., Pączkowska M., Wielgat-Rychert M. et al. (2013). Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268–276. DOI: 10.2478/s13545-013-0083-x. http://dx.doi.org/10.2478/s13545-013-0083-x10.2478/s13545-013-0083-x Search in Google Scholar

[25] Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28: 345–359. DOI: 10.1093/plankt/fbi118. http://dx.doi.org/10.1093/plankt/fbi11810.1093/plankt/fbi118 Search in Google Scholar

[26] Santoferrara, L. & Alder V. (2009). Abundance trends and ecology of planktonic ciliates of the south-western Atlantic (35–63°S): a comparison between neritic and oceanic environments. J. Plankton Res. 31: 837–851. DOI: 10.1093/plankt/fbp033. http://dx.doi.org/10.1093/plankt/fbp03310.1093/plankt/fbp033 Search in Google Scholar

[27] Sherr, E.B. & Sherr B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293–308. http://dx.doi.org/10.1023/A:102059130726010.1023/A:1020591307260 Search in Google Scholar

[28] Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11. http://dx.doi.org/10.1007/BF0039465710.1007/BF00394657 Search in Google Scholar

[29] Sohrin, R., Imazawa M., Fukuda H. & Suzuki Y. (2010). Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. Pt. II 57: 1537–1550. DOI: 10.1016/j.dsr2.2010.02.020. http://dx.doi.org/10.1016/j.dsr2.2010.02.02010.1016/j.dsr2.2010.02.020 Search in Google Scholar

[30] Sorokin, Y.I., Kopylov A.I. & Mamaeva N.V. (1985). Abundance and dynamics of microplankton in the central tropical Indian Ocean. Mar. Ecol. Prog. Ser. 24: 27–41. http://dx.doi.org/10.3354/meps02402710.3354/meps024027 Search in Google Scholar

[31] Stoecker D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122–144). Chichester: Wiley-Blackwell. 10.1002/9781118358092.ch5 Search in Google Scholar

[32] Stoecker, D.K., Sieracki M.E., Verity P.G., Michaels A.E., Haugen E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427–443. http://dx.doi.org/10.1017/S002531540003944810.1017/S0025315400039448 Search in Google Scholar

[33] Stoecker, D.K., Taniguchi A. & Michaels A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241–254. http://dx.doi.org/10.3354/meps05024110.3354/meps050241 Search in Google Scholar

[34] Stukel, M.R. & Landry M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669–2685. DOI: 10.4319/lo.2010.55.6.2669. 10.4319/lo.2010.55.6.2669 Search in Google Scholar

[35] Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132: 375–382. http://dx.doi.org/10.1007/s00227005040410.1007/s002270050404 Search in Google Scholar

[36] Tett, P. & Wilson H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431–446. http://dx.doi.org/10.1016/S0924-7963(00)00032-410.1016/S0924-7963(00)00032-4 Search in Google Scholar

[37] Vaque, D., Alonso-Sáez L., Arístegui J., Agustí S., Duarte C.M. et al. (2014). Bacterial production and losses to predators along an open ocean productivity gradient in the Subtropical North East Atlantic Ocean. J. Plankton Res. 36: 198–213. DOI: 10.1093/plankt/fbt085. http://dx.doi.org/10.1093/plankt/fbt08510.1093/plankt/fbt085 Search in Google Scholar

[38] Verity, P.G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859–867. http://dx.doi.org/10.1093/plankt/6.5.85910.1093/plankt/6.5.859 Search in Google Scholar

[39] Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1993). Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47N, 18W. Deep-Sea Res. Pt. I 40: 1793–1814. http://dx.doi.org/10.1016/0967-0637(93)90033-Y10.1016/0967-0637(93)90033-Y Search in Google Scholar

[40] Verity, P.G., Stoecker D.K., Sieracki M.E. & Nelson J.R. (1996). Microzooplankton grazing of primary production at 140 W in the equatorial Pacific. Deep-Sea Res. Pt. II 43: 1227–1255. http://dx.doi.org/10.1016/0967-0645(96)00021-510.1016/0967-0645(96)00021-5 Search in Google Scholar

[41] WoRMS Editorial Board. 2014. World Register of Marine Species, Retrieved April 18, 2014, from http://www.marinespecies.org 10.1016/S1468-1218(14)00026-1 Search in Google Scholar

[42] Yang, E.J., Choi J.K. & Hyun J.-H. (2004). Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146: 1–15. DOI: 10.1007/s00227-004-1412-9. http://dx.doi.org/10.1007/s00227-004-1412-910.1007/s00227-004-1412-9 Search in Google Scholar

eISSN:
1897-3191
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Chemistry, other, Geosciences, Life Sciences