1. bookVolume 32 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Preparation of vertically aligned ZnO crystal rods in aqueous solution at external electric field

Published Online: 22 Jul 2014
Volume & Issue: Volume 32 (2014) - Issue 2 (June 2014)
Page range: 157 - 163
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this study, an external electric field was used to facilitate the growth of vertically aligned ZnO crystal rods on the surface of indium tin oxide (ITO) glass substrates in an aqueous solution. We used Zn(NO3) and C6H12N4 as precursor and reagent. We found that the external electric field generated by DC potential of 5 kV between two electrodes that were placed outside the bottle could facilitate the growth of homogeneous, high density and vertically aligned ZnO crystal rods. Position of the substrate during the growth of crystal was found to be important to obtain well aligned crystal. The crystals that were grown near the negative electrode had the best properties. Photoluminescence measurement at room temperature revealed sharp peaks at around 360 and 380 nm and a broad peak around 420 nm that indicated good properties of ZnO crystals grown with external electric field.

Keywords

[1] Mang A., Reimann K., Rübenacke S., Solid State Commun., 94 (1995), 251. http://dx.doi.org/10.1016/0038-1098(95)00054-210.1016/0038-1098(95)00054-2Search in Google Scholar

[2] Reynolds D.C., Look D.C., Jogai B., Solid State Commun., 99 (1996), 873. http://dx.doi.org/10.1016/0038-1098(96)00340-710.1016/0038-1098(96)00340-7Search in Google Scholar

[3] Park W.I., Yi G.C., Kim J.W., Park S.M., Appl. Phys. Lett., 82 (2003), 4358. http://dx.doi.org/10.1063/1.158408910.1063/1.1584089Search in Google Scholar

[4] Saito N., Haneda H., Sekiguchi T., Onishi N., Sakaguchi I., Koumoto K., Adv. Mater., 14 (2002), 418. http://dx.doi.org/10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-K10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-KSearch in Google Scholar

[5] Baxter J.B., Walker A.M., van Ommering K., Aydil E.S., Nanotechnology, 17 (2006), S304. http://dx.doi.org/10.1088/0957-4484/17/11/S1310.1088/0957-4484/17/11/S13Search in Google Scholar

[6] Arnold M.S., Avouris P., Pan Z.W., Wang Z.L., J. Phys. Chem. B, 107 (2003), 659. http://dx.doi.org/10.1021/jp027105410.1021/jp0271054Search in Google Scholar

[7] Golego N., Studenikin S.A., Cocivera M., J. Electrochem. Soc., 147 (2000), 1592. http://dx.doi.org/10.1149/1.139340010.1149/1.1393400Search in Google Scholar

[8] Park J.Y., Yun Y.S., Hong Y.S., Oh H., Kim J.J., Kim S.S., Appl. Phys. Lett., 87 (2005), 123108. http://dx.doi.org/10.1063/1.205336510.1063/1.2053365Search in Google Scholar

[9] Choi J.H., Tabata H., Kawai T., J. Cryst. Growth, 226 (2001), 492. http://dx.doi.org/10.1016/S0022-0248(01)01388-410.1016/S0022-0248(01)01388-4Search in Google Scholar

[10] Zhang X.H., Liu Y.C., Wang X.H., Chen S.J., Wang G.R., Zhang J.Y., Lu Y.M., Shen D.Z., Fan X.W., J. Phys.-Condens. Mat., 17 (2005), 3035. http://dx.doi.org/10.1088/0953-8984/17/19/01710.1088/0953-8984/17/19/017Search in Google Scholar

[11] Vayssieres L., Adv. Mater., 15 (2003), 464. http://dx.doi.org/10.1002/adma.20039010810.1002/adma.200390108Search in Google Scholar

[12] Yan X., Li Z., Chen R., Gao W., Cryst. Growth Des., 8 (2008), 2406. http://dx.doi.org/10.1021/cg701259910.1021/cg7012599Search in Google Scholar

[13] Zhang R., Kumar S., Zou S., Kerr L.L., Cryst. Growth Des., 8 (2008), 381. http://dx.doi.org/10.1021/cg700825v10.1021/cg700825vSearch in Google Scholar

[14] Hirose C., Matsumoto Y., Yamamoto Y., Koinuma H., Appl. Phys. A-Mater., 79 (2004), 807. http://dx.doi.org/10.1007/s00339-004-2568-310.1007/s00339-004-2568-3Search in Google Scholar

[15] Liu C.H., Yan M., Liu X., Seelig E., Chang R.P.H., Chem. Phys. Lett., 355 (2002), 43. http://dx.doi.org/10.1016/S0009-2614(02)00162-810.1016/S0009-2614(02)00162-8Search in Google Scholar

[16] Wulfsberg G., Principles of Descriptive Inorganic Chemistry, University Science Books, U.S., Sausalito, 1991. Search in Google Scholar

[17] Wang D., Meng X., Chen Z., Fu Q., Physica E, 40 (2008), 852. http://dx.doi.org/10.1016/j.physe.2007.10.07310.1016/j.physe.2007.10.073Search in Google Scholar

[18] Uekawa N., Yamashita R., Wu Y.J., Kakegawa K., Phys. Chem. Chem. Phys., 6 (2004), 442. http://dx.doi.org/10.1039/b310306d10.1039/b310306dSearch in Google Scholar

[19] Shi Y.L., Wang J., Li H.L., Appl. Phys. A-Mater., 79 (2004), 1797 http://dx.doi.org/10.1007/s00339-003-2092-x10.1007/s00339-003-2092-xSearch in Google Scholar

[20] Spanhel L., Anderson M.A., J. Am. Chem. Soc., 113 (1991), 2826 http://dx.doi.org/10.1021/ja00008a00410.1021/ja00008a004Search in Google Scholar

[21] Guo B., Qiu Z.R., Wong K. S., Appl. Phys. Lett., 82 (2003), 2290. http://dx.doi.org/10.1063/1.156648210.1063/1.1566482Search in Google Scholar

[22] Makino T., Segawa Y., Yoshida S., Tsukazaki A., Ohmoto A., Kawasaki M., Appl. Phys. Lett., 85 (2005), 759. http://dx.doi.org/10.1063/1.177663010.1063/1.1776630Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo