1. bookVolume 32 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Synthesis of V2O3/C composites with different morphologies by a facile route and phase transition properties of the compounds

Published Online: 22 Jul 2014
Volume & Issue: Volume 32 (2014) - Issue 2 (June 2014)
Page range: 236 - 242
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

V2O3 and amorphous carbon composites (V2O3/C composites) with different morphologies (e.g. nanospheres, nanorods and nanosheets) were, for the first time, successfully synthesized by a facile hydrothermal route and subsequent calcination. The as-obtained samples were characterized by X-ray powder diffraction (XRD), energy dispersive spectrometery (EDS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The morphology of V2O3/C composites could be easily controlled by varying the reaction time, and, as a result, V2O3/C composites with nanospheres, nanorods and nanosheets were selectively synthesized. Furthermore, the phase transition property of V2O3/C composites was measured by differential scanning calorimetry (DSC), suggesting that V2O3/C composites exhibit the phase transition similar to V2O3, which could expand the potential applications of materials related to V2O3 in the future.

Keywords

[1] Qi J., Ning G., Hua R., Tian M., Liu S., Mater. Sci.-Poland, 30 (2012), 151. http://dx.doi.org/10.2478/s13536-012-0010-710.2478/s13536-012-0010-7Search in Google Scholar

[2] Zhang Y., Huang Y., Zhang J., Wu W., Niu F., Zhong Y., Liu X., Liu X., Huang C., Mater. Res. Bull., 47 (2012), 1978. http://dx.doi.org/10.1016/j.materresbull.2012.04.01510.1016/j.materresbull.2012.04.015Search in Google Scholar

[3] Zhang Y., Fan M., Liu X., Xie G., Li H., Huang C., Solid State Commun., 152 (2012), 253. http://dx.doi.org/10.1016/j.ssc.2011.11.03610.1016/j.ssc.2011.11.036Search in Google Scholar

[4] Zhang Y., Li W., Fan M., Zhang F., Zhang J., Liu X., Zhang H., Huang C., Li H., J. Alloy. Compd., 544 (2012), 30. http://dx.doi.org/10.1016/j.jallcom.2012.07.09310.1016/j.jallcom.2012.07.093Search in Google Scholar

[5] Surnev S., Ramsey M.G., Netzer F.P., Prog. Surf. Sci., 73 (2003), 117. http://dx.doi.org/10.1016/j.progsurf.2003.09.00110.1016/j.progsurf.2003.09.001Search in Google Scholar

[6] Zhang Y., Zhang J., Fan M., Long Y.A., Zhong Y., Liu X., Huang C.H.I., B. Mater. Sci., 36 (2013), 345. http://dx.doi.org/10.1007/s12034-013-0476-x10.1007/s12034-013-0476-xSearch in Google Scholar

[7] Zhang Y., Chen C., Wu W., Niu F., Liu X., Zhong Y., Cao Y., Liu X., Huang C., Ceram. Int., 39 (2013), 129. http://dx.doi.org/10.1016/j.ceramint.2012.06.00110.1016/j.ceramint.2012.06.001Search in Google Scholar

[8] Liu J., Wang X., Peng Q., Li Y., Adv. Mater., 17 (2005), 764. http://dx.doi.org/10.1002/adma.20040099310.1002/adma.200400993Search in Google Scholar

[9] Zhang Y., Zhang J., Zhang X., Huang C., Zhong Y., Deng Y., Mater. Lett., 92 (2013), 61. http://dx.doi.org/10.1016/j.matlet.2012.10.05410.1016/j.matlet.2012.10.054Search in Google Scholar

[10] Zhang Y., Zhang J., Zhang X., Deng Y., Zhong Y., Huang C., Liu X., Liu X., Mo S., Ceram. Int., 39 (2013), 8363. http://dx.doi.org/10.1016/j.ceramint.2013.04.01610.1016/j.ceramint.2013.04.016Search in Google Scholar

[11] Parkin I.P., Manning T.D., J. Chem. Educ., 83 (2006), 393. http://dx.doi.org/10.1021/ed083p39310.1021/ed083p393Search in Google Scholar

[12] Zhang Y., Zhang J., Zhang X., Mo S., Wu W., Niu F., Zhong Y., Liu X., Huang C., Liu X., J. Alloy. Compd., 570 (2013), 104. http://dx.doi.org/10.1016/j.jallcom.2013.03.05310.1016/j.jallcom.2013.03.053Search in Google Scholar

[13] Zhang Y., Fan M., Niu F., Wu W., Huang C., Liu X., Li H., Liu X., Curr. Appl. Phys., 12 (2012), 875. http://dx.doi.org/10.1016/j.cap.2011.11.02410.1016/j.cap.2011.11.024Search in Google Scholar

[14] Xu L., Zhang Y., Deng Y., Zhong Y., Mo S., Cheng G., Huang C., Mater. Res. Bull., 48 (2013), 3620. http://dx.doi.org/10.1016/j.materresbull.2013.04.03610.1016/j.materresbull.2013.04.036Search in Google Scholar

[15] Zhang Y., Liu X., Xie G., Yu L., Yi S., Hu M., Huang C., Mater. Sci. Eng. B-Adv., 175 (2010), 164. http://dx.doi.org/10.1016/j.mseb.2010.07.02310.1016/j.mseb.2010.07.023Search in Google Scholar

[16] Zhang Y., Fan M., Niu F., Zhong Y., Huang C., Liu X., Wang B., Li H., Micro Nano Lett., 6 (2011), 888. http://dx.doi.org/10.1049/mnl.2011.046310.1049/mnl.2011.0463Search in Google Scholar

[17] Foex M., CR Chim., 223 (1946), 1126. Search in Google Scholar

[18] Mcwhan D.B., Remeika J.P., Phys. Rev. B, 2 (1970), 3734. http://dx.doi.org/10.1103/PhysRevB.2.373410.1103/PhysRevB.2.3734Search in Google Scholar

[19] Hendrix B.C., Wang X., Chen W., Cui W.Q., J. Mater. Sci., 3 (1992), 113. 10.1007/BF00695726Search in Google Scholar

[20] Seikh M.M., Narayana C., Sood A.K., Murugavel P., Kim M.W., Metcalf P.A., Honig J.M., Rao C.N.R., Solid State Commun., 138 (2006). 10.1016/j.ssc.2006.03.026Search in Google Scholar

[21] Kokabi H.R., Rapeaux M., Aymami J.A., Desgardin G., Mater. Sci. Eng. B-Adv., 38 (1996), 80. http://dx.doi.org/10.1016/0921-5107(95)01504-310.1016/0921-5107(95)01504-3Search in Google Scholar

[22] Dernier P.D., Marezio M., Phys. Rev. B, 2 (1970), 3771. http://dx.doi.org/10.1103/PhysRevB.2.377110.1103/PhysRevB.2.3771Search in Google Scholar

[23] Zheng C.M., Zhang X.M., He S., Fu Q., Lei D.M., J. Solid State Chem., 170 (2003), 221. http://dx.doi.org/10.1016/S0022-4596(02)00038-510.1016/S0022-4596(02)00038-5Search in Google Scholar

[24] Ballarini N., Battisti A., Cavani F., Cericola A., Lucarelli C., Racioppi S., Arpentinier P., Catal. Today, 116 (2006), 313. http://dx.doi.org/10.1016/j.cattod.2006.05.07610.1016/j.cattod.2006.05.076Search in Google Scholar

[25] Pan Y., Wu G.Z., Yi X.S., J. Mater. Sci., 29 (1994), 5757. http://dx.doi.org/10.1007/BF0034997610.1007/BF00349976Search in Google Scholar

[26] Zhang Y., Zhang J., Nie J., Zhong Y., Liu X., Huang C., Micro Nano Lett., 7 (2012), 782. http://dx.doi.org/10.1049/mnl.2012.042210.1049/mnl.2012.0422Search in Google Scholar

[27] Pinna N., Antonietti M., Niederberger M., Colloid. Surface. A, 250 (2004), 211. http://dx.doi.org/10.1016/j.colsurfa.2004.04.07810.1016/j.colsurfa.2004.04.078Search in Google Scholar

[28] Zhang K.F., Sun X.Z., Louu G.W., Liu X., Li H.L., Su Z.X., Mater. Lett., 59 (2005), 2729. http://dx.doi.org/10.1016/j.matlet.2005.01.09010.1016/j.matlet.2005.01.090Search in Google Scholar

[29] Ramana C.V., Utsunomiya S., Ewing R.C., Becker U., Solid State Commun., 137 (2006), 645. http://dx.doi.org/10.1016/j.ssc.2006.01.02610.1016/j.ssc.2006.01.026Search in Google Scholar

[30] Sediri F., Gharbi N., Mater. Sci. Eng. B-Adv., 123 (2005), 136. http://dx.doi.org/10.1016/j.mseb.2005.07.01010.1016/j.mseb.2005.07.010Search in Google Scholar

[31] Teghil R., D’Alessio L., De Bonis A., Galasso A., Ibris N., Salvi A.M., Santagata A., Villani P., J. Phys. Chem. A, 113 (2009), 14969. http://dx.doi.org/10.1021/jp905094710.1021/jp905094720028177Search in Google Scholar

[32] Liu X.H., Zhang Y.F., Yi S.P., Huang C., Liao J., Li H.B., Xiao D., Tao H.Y., J. Supercrit. Fluid., 56 (2011), 194. http://dx.doi.org/10.1016/j.supflu.2010.11.01210.1016/j.supflu.2010.11.012Search in Google Scholar

[33] Corr S.A., Grossman M., Shi Y.F., Heier K.R., Stucky G.D., Seshadri R., J. Mater. Chem., 19 (2009), 4362. http://dx.doi.org/10.1039/b900982e10.1039/b900982eSearch in Google Scholar

[34] Xu Y., Zheng L., Wu C., Qi F., Xie Y., Chem.-Eur. J., 17 (2011), 384. http://dx.doi.org/10.1002/chem.20100069110.1002/chem.201000691Search in Google Scholar

[35] Chen J.A., Liu X.A., Su Z.X., Micro Nano Lett., 6 (2011), 102. http://dx.doi.org/10.1049/mnl.2010.020710.1049/mnl.2010.0207Search in Google Scholar

[36] Odani A., Pol V.G., Pol S.V., Koltypin M., Gedanken A., Aurbach D., Adv. Mater., 18 (2006), 1431. http://dx.doi.org/10.1002/adma.20050161110.1002/adma.200501611Search in Google Scholar

[37] Sun Y.F., Jiang S.S., Bi W.T., Wu C.Z., Xie Y., J. Power Sources, 196 (2011), 8644. http://dx.doi.org/10.1016/j.jpowsour.2011.06.05010.1016/j.jpowsour.2011.06.050Search in Google Scholar

[38] Zhang Y., Fan M., Liu X., Huang C., Li H., Eur. J. Inorg. Chem., 2012 (2012), 1650. http://dx.doi.org/10.1002/ejic.20110126610.1002/ejic.201101266Search in Google Scholar

[39] Zhang Y., Zhang F., Yu L., Fan M., Zhong Y., Liu X., Mao Y., Huang C., Colloid. Surface. A, 396 (2012), 144. http://dx.doi.org/10.1016/j.colsurfa.2011.12.05810.1016/j.colsurfa.2011.12.058Search in Google Scholar

[40] Zhang Y., Fan M., Hu L., Wu W., Zhang J., Liu X., Zhong Y., Huang C., Appl. Surf. Sci., 258 (2012), 9660. Search in Google Scholar

[41] Rice C.E., Robinson W.R., J. Solid State Chem., 21 (1977), 145. http://dx.doi.org/10.1016/0022-4596(77)90154-210.1016/0022-4596(77)90154-2Search in Google Scholar

[42] Zhang Y., Liu X., Chen D., Yu L., Nie J., Yi S., Li H., Huang C., J. Alloy. Compd., 509 (2011), L69. http://dx.doi.org/10.1016/j.jallcom.2010.10.15410.1016/j.jallcom.2010.10.154Search in Google Scholar

[43] Zhang Y., Liu X., Nei J., Yu L., Zhong Y., Huang C., J. Solid State Chem., 184 (2011), 387. http://dx.doi.org/10.1016/j.jssc.2010.12.00410.1016/j.jssc.2010.12.004Search in Google Scholar

[44] Zhang Y., Zhou M., Fan M., Huang C., Chen C., Cao Y., Li H., Liu X., Curr. Appl. Phys., 11 (2011), 1159. http://dx.doi.org/10.1016/j.cap.2011.02.01010.1016/j.cap.2011.02.010Search in Google Scholar

[45] Gilson T.R., Bizri O.F., Cheetham N., Dalton T., (1973), 291. 10.1039/dt9730000291Search in Google Scholar

[46] Ros T.G., Van Dillen A.J., Geus J.W., Koningsberger D.C., Chem.-Eur. J., 8 (2002), 1151. http://dx.doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#Search in Google Scholar

[47] Llie A., Durkan C., Milne W.I., Welland M.E., Phys. Rev. B, 66 (2002), 045412/1. 10.1103/PhysRevB.66.045412Search in Google Scholar

[48] Dresselhaus M.S., Dresselhaus G., Eklund M.A.P., Raman Scattering in Carbon Materials, in: Pelletier M.J. (Ed.), Analytical Application of Raman Spectroscopy, Wiley-Blackwell Publishing, Oxford, 1999, p. 367. Search in Google Scholar

[49] Zhang Y., Fan M., Wu W., Hu L., Zhang J., Mao Y., Huang C., Liu X., Mater. Lett., 71 (2012), 127. http://dx.doi.org/10.1016/j.matlet.2011.12.06110.1016/j.matlet.2011.12.061Search in Google Scholar

[50] Zhang Y., Zhang J., Zhong Y., Yu L., Deng Y., Huang C., Liu X., Appl. Surf. Sci., 263 (2012), 124. http://dx.doi.org/10.1016/j.apsusc.2012.09.01210.1016/j.apsusc.2012.09.012Search in Google Scholar

[51] Sun X., Li Y., Angew. Chem. Int. Edit., 43 (2004), 597. http://dx.doi.org/10.1002/anie.20035238610.1002/anie.20035238614743414Search in Google Scholar

[52] Zhang Y., Fan M., Zhou M., Huang C., Chen C., Cao Y., Xie G., Li H., Liu X., B. Mater. Sci., 35 (2012), 369. http://dx.doi.org/10.1007/s12034-012-0311-910.1007/s12034-012-0311-9Search in Google Scholar

[53] Zhang Y., Chen C., Zhang J., Hu L., Wu W., Zhong Y., Cao Y., Liu X., Huang C., Curr. Appl. Phys., 13 (2013), 47. http://dx.doi.org/10.1016/j.cap.2012.06.01310.1016/j.cap.2012.06.013Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo