1. bookVolume 32 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying

Published Online: 22 Jul 2014
Volume & Issue: Volume 32 (2014) - Issue 2 (June 2014)
Page range: 281 - 291
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this study, the Taguchi robust design method is used for optimizing ball milling parameters including milling time, rotation speed and ball to powder weight ratio in the planetary ball milling of nanostructured nickel ferrite powder. In fact, the current work deals with NiFe2O4 nanoparticles mechanochemically synthesized from NiO and Fe2O3 powders. The Taguchi robust design technique of system optimization with the L9 orthogonal array is performed to verify the best experimental levels and contribution percentages (% ρ) of each parameter. Particle size measurement using SEM gives the average particle size value in the range of 59–67 nm. X-ray diffraction using Cu Kα radiation is also carried out to identify the formation of NiFe2O4 single phase. The XRD results suggest that NiFe2O4 with a crystallite size of about 12 nm is present in 30 h activated specimens. Furthermore, based on the results of the Taguchi approach the greatest effect on particle size (42.10 %) is found to be due to rotation speed followed by milling time (37.08 %) while ball to powder weight ratio exhibits the least influence.

Keywords

[1] Zhang J., Shi J., Gong M., J. Solid State Chem., 182(8) (2009), 2135. http://dx.doi.org/10.1016/j.jssc.2009.05.03210.1016/j.jssc.2009.05.032Search in Google Scholar

[2] Safarik I., Safarikova M., Nanostruct. Mater., Springer, Vienna, (2002), 1. http://dx.doi.org/10.1007/978-3-7091-6740-3_110.1007/978-3-7091-6740-3_1Search in Google Scholar

[3] Pileni M.P., Nat. Mater., 2 (2003), 145. http://dx.doi.org/10.1038/nmat81710.1038/nmat81712612669Search in Google Scholar

[4] Sun J., Zhou S., Hou P., Yang Y., Weng J., Li X., Li M., J. Biomed. Mater. Res. A, 80A (2007), 333. http://dx.doi.org/10.1002/jbm.a.3090910.1002/jbm.a.3090917001648Search in Google Scholar

[5] Salavati-Niasari M., Davar F., Mahmoudi T., Polyhedron, 28 (2009), 1455. http://dx.doi.org/10.1016/j.poly.2009.03.02010.1016/j.poly.2009.03.020Search in Google Scholar

[6] Mathew D.S., Juang R.S., Chem. Eng. J., 129 (2007), 51. http://dx.doi.org/10.1016/j.cej.2006.11.00110.1016/j.cej.2006.11.001Search in Google Scholar

[7] Kodama R.H., Berkowitz A.E., Mcniff E., Foner J., Foner S., Phys. Rev. Lett., 77 (1996), 394. http://dx.doi.org/10.1103/PhysRevLett.77.39410.1103/PhysRevLett.77.39410062440Search in Google Scholar

[8] Srivastava M., Ojha A.K., Chaubey S., Materny A., J. Alloy. Compd., 481 (2009), 515. http://dx.doi.org/10.1016/j.jallcom.2009.03.02710.1016/j.jallcom.2009.03.027Search in Google Scholar

[9] Maensiri S., Masingboon C., Boonchom B., Supapan S., Scripta Mater., 56 (2007), 797. http://dx.doi.org/10.1016/j.scriptamat.2006.09.03310.1016/j.scriptamat.2006.09.033Search in Google Scholar

[10] Xu Q., Wei Y., Liu Y., Ji X., Yang L., Gu M., Solid State Sci., 11 (2009) 472. http://dx.doi.org/10.1016/j.solidstatesciences.2008.07.00410.1016/j.solidstatesciences.2008.07.004Search in Google Scholar

[11] Arulmurugan R., Vaidyanathan G., Sendhilnathan S., Jeyadevan B., J. Magn. Magn. Mater., 298 (2006), 83. http://dx.doi.org/10.1016/j.jmmm.2005.03.00210.1016/j.jmmm.2005.03.002Search in Google Scholar

[12] Muthuselvam I.P., Bhowmik R.N., Solid State Sci., 11 (2009), 719. http://dx.doi.org/10.1016/j.solidstatesciences.2008.10.01210.1016/j.solidstatesciences.2008.10.012Search in Google Scholar

[13] Suryanarayana C., Prog. Mater. Sci.+, 46 (2001), 1. http://dx.doi.org/10.1016/S0079-6425(99)00010-910.1016/S0079-6425(99)00010-9Search in Google Scholar

[14] Maurice D.R., Courtney T.H., Metall. Mater. Trans. A, 21 (1990), 289. http://dx.doi.org/10.1007/BF0278240910.1007/BF02782409Search in Google Scholar

[15] Maurice D.R., Courtney T.H., Metall. Mater. Trans. A, 26 (1995), 2431. http://dx.doi.org/10.1007/BF0267125710.1007/BF02671257Search in Google Scholar

[16] Cook T.M., Courtney T.H., Metall. Mater. Trans. A, 26 (1995), 2389. http://dx.doi.org/10.1007/BF0267125210.1007/BF02671252Search in Google Scholar

[17] Abdellaoui M., Gaffet E., J. Alloy. Compd., 209 (1994), 351. http://dx.doi.org/10.1016/0925-8388(94)91124-X10.1016/0925-8388(94)91124-XSearch in Google Scholar

[18] Garcia-diaz A., Philips D.T., Principles of experimental design and analysis, Chapman and Hall, London, 1995. Search in Google Scholar

[19] Montgomery D.C., Design and analysis of experiments, 4th ed., John Wiley and Sons, New York, 1997. Search in Google Scholar

[20] Klug H.P., Alexander L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974. Search in Google Scholar

[21] Monshi A., Foroughi M.R., Monshi M.R., World J. Nano Sci. Eng., 2 (2012), 154. http://dx.doi.org/10.4236/wjnse.2012.2302010.4236/wjnse.2012.23020Search in Google Scholar

[22] Gheisari Kh., Javadpour S., Oh J.T., Ghaffari M., J. Alloy. Compd., 472 (2009), 416. http://dx.doi.org/10.1016/j.jallcom.2008.04.07410.1016/j.jallcom.2008.04.074Search in Google Scholar

[23] Cullity B.D., Elements of X-ray Diffraction, Addison Wesley Pub. Co. Inc., 1956, 42. Search in Google Scholar

[24] Qi W.H., Wang M.P., Mater. Chem. Phys., 88 (2004), 280. http://dx.doi.org/10.1016/j.matchemphys.2004.04.02610.1016/j.matchemphys.2004.04.026Search in Google Scholar

[25] Roy R.K., A Primer on the Taguchi Method, 2nd ed., Society of Manufacturing Engineers, 2010. Search in Google Scholar

[26] Ross P.J., Taguchi G., Techniques for Quality Engineering, McGraw-Hill, New York, 1988. Search in Google Scholar

[27] Paiva-Santos C.O., Gouveia H., Las W.C., Varela J.A., Mater. Struct., 6 (1999), 111. Search in Google Scholar

[28] Ross P.J., Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, Singapore, 1996. Search in Google Scholar

[29] Bendell A., Disney J., Pridmore W.A., Taguchi Methods: Applications in World Industry, IFS Publications, UK, 1989. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo