1. bookVolume 32 (2014): Issue 1 (January 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

Published Online: 26 Mar 2014
Volume & Issue: Volume 32 (2014) - Issue 1 (January 2014)
Page range: 80 - 87
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10−3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm − 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

Keywords

[1] Citek K., Optometry (DNLM), 79 (2008), 143. http://dx.doi.org/10.1016/j.optm.2007.08.01910.1016/j.optm.2007.08.019Search in Google Scholar

[2] Yoldas B.E., Partlow D.P., Appl. Optics, 23 (1984), 1418. http://dx.doi.org/10.1364/AO.23.00141810.1364/AO.23.001418Search in Google Scholar

[3] Baeumer S., Handbook of plastic optics, Willey-VCH, Berlin, 2005, 139. http://dx.doi.org/10.1002/352760512610.1002/3527605126Search in Google Scholar

[4] Stapiński T., Marszałek K., Lipiński M., Panek P., Szczepanik W., Investigations of solar panels with anhanced transmission glass, in: Z. Suszynski (Ed.), Microelectronic materials and technologies, WUPK, Koszalin, 2012, 285. Search in Google Scholar

[5] Stapiński T., Swatowska B., J. Non-Cryst. Solids, 352 (2006), 1406. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.04110.1016/j.jnoncrysol.2005.12.041Search in Google Scholar

[6] Winkowski P., Marszałek K., Proc. SPIE 8902, (2013), 890228. http://dx.doi.org/10.1117/12.203051110.1117/12.2030511Search in Google Scholar

[7] Zukic M., Appl. Optics, 29 (1990), 4284. http://dx.doi.org/10.1364/AO.29.00428410.1364/AO.29.004284Search in Google Scholar

[8] Selhofer H., Mueller R., Thin Solid Films, 351 (1999), 180. http://dx.doi.org/10.1016/S0040-6090(99)00305-310.1016/S0040-6090(99)00305-3Search in Google Scholar

[9] Smith D, Baumeister P., Appl. Optics, 18 (1979), 111. http://dx.doi.org/10.1364/AO.18.00011110.1364/AO.18.00011120208670Search in Google Scholar

[10] Rainer F., Lowdermilk W.H., Milam D., Carniglia C.K., Hart T.T., Lichtenstein T.L., Appl. Optics, 24 (1985), 496. http://dx.doi.org/10.1364/AO.24.00049610.1364/AO.24.00049618216976Search in Google Scholar

[11] Izawa T., Yamamura N., Uchimura R., Hashimoto I., Yakuoh T. et al., Proc. SPIE 1441, (1990), 339. http://dx.doi.org/10.1117/12.5724210.1117/12.57242Search in Google Scholar

[12] Zuber A., Kaiser N., Stehle L.J., Thin Solid Films, 261 (1995), 37. http://dx.doi.org/10.1016/S0040-6090(94)06492-X10.1016/S0040-6090(94)06492-XSearch in Google Scholar

[13] Kaiser N., Uhlig H., Schallenberg U., Anton B., Kaiser U., Mann K., Eva E., Thin Solid Films, 260 (1995), 86. http://dx.doi.org/10.1016/0040-6090(94)06469-510.1016/0040-6090(94)06469-5Search in Google Scholar

[14] Bach H., Krause D. (Eds.), Thin Films on Glass, Springer-Verlag, Berlin/Heidelberg/New York, 1997. Search in Google Scholar

[15] Karasiński P., Jaglarz J., Reben M., Skoczek E., Mazur J., Opt. Mater., 33 (2011), 1989. http://dx.doi.org/10.1016/j.optmat.2011.04.00310.1016/j.optmat.2011.04.003Search in Google Scholar

[16] Crawford L.J., Edmonds N.R., Thin Solid Films, 515 (2006), 907. http://dx.doi.org/10.1016/j.tsf.2006.07.05810.1016/j.tsf.2006.07.058Search in Google Scholar

[17] Lee H.M., Sahoo K.C., Li Y.W., Wu J.C., Chang E.Y., Thin Solid Films, 518 (2010), 7204. http://dx.doi.org/10.1016/j.tsf.2010.04.07810.1016/j.tsf.2010.04.078Search in Google Scholar

[18] Kumar P., Wiedmann M.K., Winter C.H., Avrutsky I., Appl. Optics, 48 (2009), 5407. http://dx.doi.org/10.1364/AO.48.00540710.1364/AO.48.00540719798382Search in Google Scholar

[19] Fujiwara H., Spectroscopic Ellipsometry: Principles and Applications, Wiley & Sons, 2007. http://dx.doi.org/10.1002/978047006019310.1002/9780470060193Search in Google Scholar

[20] Azzam R.M.A, Bashara N.M., Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1995. Search in Google Scholar

[21] Jaglarz J., Wagner T., Cisowski J., Sanetra J., Opt. Mater., 29 (2007), 908. http://dx.doi.org/10.1016/j.optmat.2006.02.00310.1016/j.optmat.2006.02.003Search in Google Scholar

[22] Bruggeman D.A.G., Ann. Phys.-Berlin, 416 (1935), 665. http://dx.doi.org/10.1002/andp.1935416080210.1002/andp.19354160802Search in Google Scholar

[23] Jaglarz J., Thin Solid Films, 516 (2008), 8077. http://dx.doi.org/10.1016/j.tsf.2008.04.07210.1016/j.tsf.2008.04.072Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo