1. bookVolume 31 (2013): Issue 2 (April 2013)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Molten salt synthesis of YAlO3 powders

Published Online: 20 Apr 2013
Volume & Issue: Volume 31 (2013) - Issue 2 (April 2013)
Page range: 240 - 245
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this work, the molten salt synthesis technique was applied to the synthesis of YAlO3 powder using LiCl, NaCl or KCl salt as the flux. YAlO3 powder was synthesized by reacting equimolar amounts of Y2O3 and Al2O3 powders in LiCl salt. The synthesis temperature for YAlO3 using LiCl salt was 1300 °C which is by about 500 °C lower than that in the conventional mixed-oxide method. The synthesized powders have been characterized using powder X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FE-SEM). The effect of the salt type on the formation of YAlO3 has also been investigated.

Keywords

[1] Romero J.J., Montoya E., Bausá L.E., Agulló-Rueda F., Andreeta M.R.B., Hernandes A.C., Opt. Mater. 24 (2004), 643. http://dx.doi.org/10.1016/S0925-3467(03)00179-410.1016/S0925-3467(03)00179-4Search in Google Scholar

[2] Gao H., Wang Y., Mater. Res. Bull. 42 (2007), 921. http://dx.doi.org/10.1016/j.materresbull.2006.08.01010.1016/j.materresbull.2006.08.010Search in Google Scholar

[3] Nikl M., Yoshikawa A., Vedda A., Fukuda T., J. Cryst. Growth 292 (2006), 416. http://dx.doi.org/10.1016/j.jcrysgro.2006.04.04810.1016/j.jcrysgro.2006.04.048Search in Google Scholar

[4] Zhydachevskii Ya. A. et al., Nucl. Instr. Meth. Phys. Res. B227 (2005), 545. http://dx.doi.org/10.1016/j.nimb.2004.09.01310.1016/j.nimb.2004.09.013Search in Google Scholar

[5] Loutts G.B. et al., Phys. Rev. B57 (1998), 3706. 10.1103/PhysRevB.57.3706Search in Google Scholar

[6] Shirpour M., Faghihi Sani M.A., Mirhabibi A., Ceram. Int. 33 (2007), 1427. http://dx.doi.org/10.1016/j.ceramint.2006.04.02310.1016/j.ceramint.2006.04.023Search in Google Scholar

[7] Hariharan R., Gopalan P., J. Alloys Compd. 496 (2010) 528. http://dx.doi.org/10.1016/j.jallcom.2010.02.09510.1016/j.jallcom.2010.02.095Search in Google Scholar

[8] Roth R.S., Phase Equilibria Diagrams: Phase Diagrams for Ceramists, Am. Ceram. Soc., 1995. Search in Google Scholar

[9] Medraj M., Hammond R., Parvez M.A., Drew R.A.L., Thompson W.T., J. Eur. Ceram. Soc. 26 (2006), 3515. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.12.00810.1016/j.jeurceramsoc.2005.12.008Search in Google Scholar

[10] Gowda G., J. Mater. Sci. Lett. 5 (1986), 1029. http://dx.doi.org/10.1007/BF0173027310.1007/BF01730273Search in Google Scholar

[11] Rao R.P., J. Electrochem. Soc. 143 (1996), 189. http://dx.doi.org/10.1149/1.183640710.1149/1.1836407Search in Google Scholar

[12] Lo J., Tseng T., J. Mater. Chem. Phys. 56 (1998), 56. http://dx.doi.org/10.1016/S0254-0584(98)00139-410.1016/S0254-0584(98)00139-4Search in Google Scholar

[13] Tanner P.A., Law P.T., Wong K.L., Fu L., J. Mater. Sci. 38 (2003), 4857. http://dx.doi.org/10.1023/B:JMSC.0000004405.52574.3710.1023/B:JMSC.0000004405.52574.37Search in Google Scholar

[14] Baran M., Zhydachevskii Ya. A., Suchocki A., Reszka A., Warchol S., Diduszko R., Opt. Mater. 34 (2012), 604. http://dx.doi.org/10.1016/j.optmat.2011.08.02810.1016/j.optmat.2011.08.028Search in Google Scholar

[15] Basavalingu B., Girish H.N., Byrappa K., Soga K., Mater. Chem. Phys. 112 (2008), 723. http://dx.doi.org/10.1016/j.matchemphys.2008.06.04910.1016/j.matchemphys.2008.06.049Search in Google Scholar

[16] Carvalho J.F., Vicente F.S., Marcellin N., Odier P., Hernandes A.C., Ibanez A., J. Therm. Anal. Calorim. 96 (2009), 891. http://dx.doi.org/10.1007/s10973-009-0045-010.1007/s10973-009-0045-0Search in Google Scholar

[17] Harada M., Ue A., Inoue M., Guo X., Sakurai K., J. Mater. Sci. Lett. 20 (2001), 741. http://dx.doi.org/10.1023/A:101092341114610.1023/A:1010923411146Search in Google Scholar

[18] Yoon K.H., Cho Y.S., Kang D.H., J. Mater. Sci. 33 (1998), 2977. http://dx.doi.org/10.1023/A:100431093164310.1023/A:1004310931643Search in Google Scholar

[19] Zhang S., Jayaseelan D.D., Bhattacharya G., Lee W.E., J. Am. Ceram. Soc. 89 (2006), 1724. http://dx.doi.org/10.1111/j.1551-2916.2006.00932.x10.1111/j.1551-2916.2006.00932.xSearch in Google Scholar

[20] Li Z., Zhang S., Lee W.E., J. Eur. Ceram. Soc. 27 (2007), 3201. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.01.00810.1016/j.jeurceramsoc.2007.01.008Search in Google Scholar

[21] Li Z., Zhang S., Lee W.E., J. Eur. Ceram. Soc. 27 (2007), 3407. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.19510.1016/j.jeurceramsoc.2007.02.195Search in Google Scholar

[22] Yang H.B., Lin Y., Ang F., Luo H.J., Mater. Technol. 23 (2008), 138. 10.1179/175355508X266962Search in Google Scholar

[23] Mathur S., Shen H., Rapalaviciute R., Kareiva A., Donia N., J. Mater. Chem. 14 (2004), 3259. http://dx.doi.org/10.1039/b406760f10.1039/b406760fSearch in Google Scholar

[24] Zhydachevskii Ya. A., Durygin A., Drozd V., Suchocki A., Sugak D., Wrobel J., J Phys.: Condens. Matter 20 (2008), 095204. http://dx.doi.org/10.1088/0953-8984/20/9/09520410.1088/0953-8984/20/9/095204Search in Google Scholar

[25] Roth R.S., Clevinger M.A., Mckenna D., Phase Diagrams for Ceramists, Am. Ceram. Soc., 1984. Search in Google Scholar

[26] Wakao M., Minami K., Nagashima A., Int. J. Thermophys. 12 (1991), 223. http://dx.doi.org/10.1007/BF0050074810.1007/BF00500748Search in Google Scholar

[27] Ito T., Kogima N., Nagashima A., Int. J. Thermophys. 10 (1989), 819. http://dx.doi.org/10.1007/BF0051447810.1007/BF00514478Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo