1. bookVolume 30 (2012): Issue 2 (June 2012)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Size effect and dielectric properties of NH4H2PO4 — porous glass composites

Published Online: 18 Jul 2012
Volume & Issue: Volume 30 (2012) - Issue 2 (June 2012)
Page range: 143 - 150
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

NH4H2PO4 nano-composite antiferroelectric materials in porous glass have been studied by means of dielectric and dilatometric investigations. Dielectric spectroscopy measurements in a wide frequency range are reported here for the first time, for both the antiferro- and paraelectric phases of ammonium dihydrogen phosphate (ADP) embedded in a porous matrix. Low frequency relaxation processes above the phase transition temperature were shown to occur. An investigation of the thermal expansion revealed a negative volume jump at the phase transition point. It was found that the phase transition temperature in ADP crystals embedded in porous glass decreased with the decrease of the mean pore size. The experimentally observed shift of the phase transition temperature is caused by a combination of size and pressure effects.

Keywords

[1] Landolt-Bornstein: Numerical data and functional relationships in science and technology: Group III: Crystals and solid state physics, vol.16, Edited by K. -H. Hellwege, Springer-Verlag Berlin Heidelberg New York, 1982. Search in Google Scholar

[2] Lines M. E., Glass A. M., Principle and applications of ferroelectrics and related materials, Clarendon Press, Oxford, 1977. Search in Google Scholar

[3] Lasave J., Koval S., Migoni R.L., Phys. B 404 (2009), 2749. http://dx.doi.org/10.1016/j.physb.2009.06.07610.1016/j.physb.2009.06.076Search in Google Scholar

[4] Samara G.A., Phys. Rev. Lett. 27 (1971), 103–106. http://dx.doi.org/10.1103/PhysRevLett.27.10310.1103/PhysRevLett.27.103Search in Google Scholar

[5] Tarnavich V., Korotkov L., Karaeva O., Naberezhnov A., Rysiakiewicz-pasek E., Opt. Appl. XL, 2 (2010), 305. Search in Google Scholar

[6] Marciniszyn T., Poprawski R., Komar J., Sieradzki A., Phase Transitions 83 (2010), 909. http://dx.doi.org/10.1080/01411594.2010.50959310.1080/01411594.2010.509593Search in Google Scholar

[7] Rysiakiewicz-Pasek E., Lukaszewski P., Bogdanska J., Opt. Appl. 30 (2000), 173. Search in Google Scholar

[8] Dziedzic J., Poprawski R., Bronowska W., Acta. Phys. Pol. A 63 (1983), 45. Search in Google Scholar

[9] Colla E.V., Fokin A.V., Kumzerov Yu., Sol. State. Comm. 103 (1997), 127. http://dx.doi.org/10.1016/S0038-1098(97)00132-410.1016/S0038-1098(97)00132-4Search in Google Scholar

[10] Frennibg G., Phys. Rev. B 65 (2002), 245117. http://dx.doi.org/10.1103/PhysRevB.65.24511710.1103/PhysRevB.65.245117Search in Google Scholar

[11] Jonscher A.K., Frost M.S., Thin Sol. Films 37 (1976), 267. http://dx.doi.org/10.1016/0040-6090(76)90193-010.1016/0040-6090(76)90193-0Search in Google Scholar

[12] Chen R.H., Yen Chen-chieh, Shern C.S., Fukami T., Sol. State Ion. 177 (2006), 2857. http://dx.doi.org/10.1016/j.ssi.2006.05.05310.1016/j.ssi.2006.05.053Search in Google Scholar

[13] Zwicker B., Helv. Phys. Acta 19 (1946), 523. Search in Google Scholar

[14] Cook W.O., J. Appl. Phys. 38 (1967), 1637. http://dx.doi.org/10.1063/1.170973510.1063/1.1709735Search in Google Scholar

[15] Boiko A.A., Golovnin V.A., Sov. Phys. Crystallogr. 15 (1970), 186. 10.1037/009895Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo