1. bookVolume 41 (2014): Issue 4 (December 2014)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Estimating the number of components in an OSL decay curve using the Bayesian Information Criterion

Published Online: 01 Oct 2014
Volume & Issue: Volume 41 (2014) - Issue 4 (December 2014)
Page range: 334 - 341
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

The optically stimulated luminescence (OSL) decay curve is assumed to consist of a number of first-order exponential components. Improper estimation of the number of components leads to under-or over-fitting of the curve under consideration. Hence, correct estimation of the number of components is important to accurately analyze an OSL decay curve. In this study, we investigated the possibility of using the Bayesian Information Criterion to estimate the optimal number of components in an OSL decay curve. We tested the reliability of this method using several hundred measured decay curves and three simulation scenarios. Our results demonstrate that the quality of the identification can be influenced by several factors: the measurement time and the number of channels; the variability of the decay constants; and the signal-to-noise ratios of a decaying component. The results also suggest that the Bayesian Information Criterion has great potential to estimate the number of components in an OSL decay curve with a moderate to high signal-to-noise ratio.

Keywords

[1] Adamiec G, 2000. Variations in luminescence properties of single quartz grains and their consequences for equivalent dose estimation. Radiation Measurements 32(5–6): 427–432, DOI 10.1016/S1350-4487(00)00043-3. http://dx.doi.org/10.1016/S1350-4487(00)00043-310.1016/S1350-4487(00)00043-3Search in Google Scholar

[2] Adamiec G, 2005. OSL decay curves-relationship between single- and multiple-grain aliquots. Radiation Measurements 39(1): 63–75, DOI 10.1016/j.radmeas.2004.03.007. http://dx.doi.org/10.1016/j.radmeas.2004.03.00710.1016/j.radmeas.2004.03.007Search in Google Scholar

[3] Adamiec G, Heer AJ and Bluszcz A, 2012. Statistics of count numbers from a photomultiplier tube and its implications for error estimation. Radiation Measurements 47(9): 746–751, DOI 10.1016/j.radmeas.2011.12.009. http://dx.doi.org/10.1016/j.radmeas.2011.12.00910.1016/j.radmeas.2011.12.009Search in Google Scholar

[4] Bluszcz A and Adamiec G, 2006. Application of differential evolution to fitting OSL decay curves. Radiation Measurements 41(7–8): 886–891, DOI 10.1016/j.radmeas.2006.05.016. http://dx.doi.org/10.1016/j.radmeas.2006.05.01610.1016/j.radmeas.2006.05.016Search in Google Scholar

[5] Duller GAT, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25(1): 15–24. Search in Google Scholar

[6] Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612, DOI 10.1111/j.1502-3885.2008.00051.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00051.x10.1111/j.1502-3885.2008.00051.xSearch in Google Scholar

[7] Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sand-sized grains of quartz: source of variability. Radiation Measurements 32(5–6): 453–457, DOI 10.1016/S1350-4487(00)00055-X. http://dx.doi.org/10.1016/S1350-4487(00)00055-X10.1016/S1350-4487(00)00055-XSearch in Google Scholar

[8] Fitzsimmons KE, 2011. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 38(3): 199–208, DOI 10.2478/s13386-011-0030-9. http://dx.doi.org/10.2478/s13386-011-0030-910.2478/s13386-011-0030-9Search in Google Scholar

[9] Galbraith RF, 1988. Graphical display of estimates having differing standard errors. Technometrics 30(3): 271–281, DOI 10.2307/1270081. http://dx.doi.org/10.1080/00401706.1988.1048840010.1080/00401706.1988.10488400Search in Google Scholar

[10] Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020. http://dx.doi.org/10.1016/j.quageo.2012.04.02010.1016/j.quageo.2012.04.020Search in Google Scholar

[11] Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

[12] Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37(4–5): 441–449, DOI 10.1016/S1350-4487(03)00052-0. http://dx.doi.org/10.1016/S1350-4487(03)00052-010.1016/S1350-4487(03)00052-0Search in Google Scholar

[13] Li B, 2007. A note on estimating the error when subtracting background counts from weak OSL signals. Ancient TL 25(1): 9–14. Search in Google Scholar

[14] Li B and Li SH, 2006a. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiation Measurements 41(2): 125–136, DOI 10.1016/j.radmeas.2005.06.037. http://dx.doi.org/10.1016/j.radmeas.2005.06.03710.1016/j.radmeas.2005.06.037Search in Google Scholar

[15] Li SH and Li B, 2006b. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements 41(5): 534–541, DOI 10.1016/j.radmeas.2005.04.029. http://dx.doi.org/10.1016/j.radmeas.2005.04.02910.1016/j.radmeas.2005.04.029Search in Google Scholar

[16] Peng J, Dong ZB, Han FQ, Long H and Liu XJ, 2013. R package nu-mOSL: numeric routines for optically stimulated luminescence dating. Ancient TL 31(2): 41–48. http://CRAN.R-project.org/package=numOSL. Search in Google Scholar

[17] Peng J and Han FQ, 2013. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert. Acta Geoscientica Sinica 34(6): 757–762 (in Chinese with English abstract). Search in Google Scholar

[18] Rhodes EJ, 2007. Quartz single grain OSL sensitivity distributions: implications for multiple grain single aliquot dating. Geochronometria 26: 19–29, DOI 10.2478/v10003-007-0002-5. http://dx.doi.org/10.2478/v10003-007-0002-510.2478/v10003-007-0002-5Search in Google Scholar

[19] Schwarz G, 1978. Estimating the dimension of a model. Annals of statistics 6(2): 461–464, DOI 10.1214/aos/1176344136. http://dx.doi.org/10.1214/aos/117634413610.1214/aos/1176344136Search in Google Scholar

[20] Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458, DOI 10.1016/S1350-4487(03)00062-3. http://dx.doi.org/10.1016/S1350-4487(03)00062-310.1016/S1350-4487(03)00062-3Search in Google Scholar

[21] Singarayer JS and Bailey RM, 2004. Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiation Measurements 38(1): 111–118, DOI 10.1016/S1350-4487(03)00250-6. http://dx.doi.org/10.1016/S1350-4487(03)00250-610.1016/S1350-4487(03)00250-6Search in Google Scholar

[22] Sivia DS, 1996. Data Analysis: a Bayesian Tutorial. Oxford University Press, Oxford. Search in Google Scholar

[23] Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geo-chronology 4(5): 353–362, DOI 10.1016/j.quageo.2009.05.015. 10.1016/j.quageo.2009.05.015Search in Google Scholar

[24] Storn R and Price K, 1997. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization 11: 341–359. http://dx.doi.org/10.1023/A:100820282132810.1023/A:1008202821328Search in Google Scholar

[25] Tokuyasu K, Tanaka K, Tsukamoto S and Murray A, 2010. The characteristics of OSL signal from quartz grains extracted from modern sediments in Japan. Geochronometria 37: 13–19, DOI 10.2478/v10003-010-0020-6. http://dx.doi.org/10.2478/v10003-010-0020-610.2478/v10003-010-0020-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo