1. bookVolume 41 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings

Published Online: 22 Jun 2014
Volume & Issue: Volume 41 (2014) - Issue 3 (September 2014)
Page range: 265 - 277
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

X-ray based tree-ring data of maximum latewood densities (MXD) was combined for south-eastern Finland. This data originated from subfossil and modern pine (Pinus sylvestris L.) materials comprising a continuous dendroclimatic record over the past millennium. Calibrating and verifying the MXD chronologies against the instrumental temperature data showed a promising opportunity to reconstruct warm-season (May through September) temperature variability. A new palaeotemperature record correlated statistically significantly with the long instrumental temperature records in the region and adjacent areas since the 1740s. Comparisons with tree-ring based (MXD and tree-ring width) reconstructions from northern Fennoscandia and northern Finland exhibited consistent summer temperature variations through the Medieval Climate Anomaly, Little Ice Age, and the 20th century warmth. A culmination of the LIA cooling during the early 18th century appeared consistently with the Maunder Minimum, when the solar activity was drastically reduced. A number of coolest reconstructed events between AD 1407 and 1902 were coeval to years of crop failure and famine as documented in the agro-historical chronicles. Results indicate an encouraging possibility of warm-season temperature reconstructions using middle/south boreal tree-ring archives to detail and enhance the understanding of past interactions between humans, ecosystems and the earth.

Keywords

[1] Ahti T, Hämet-Ahti L and Jalas J, 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 3:169–211. Search in Google Scholar

[2] Aniol RW, 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53. Search in Google Scholar

[3] Bartholin T, 1987. Dendrochronology in Sweden. Annales Academiae Scientiarum Fennicae 145: 79–88. Search in Google Scholar

[4] Bergsten U, Lindeberg J, Ringdby A and Evans R, 2001. Batch meas-urements of wood density on intact or prepared drill cores using X-ray microdensitometry. Wood Science and Technology 35: 435–452, DOI 10.1007/s002260100106. http://dx.doi.org/10.1007/s00226010010610.1007/s002260100106Search in Google Scholar

[5] Bradley RS, 1999. Paleoclimatology: reconstructing climates of the Quaternary. London, Academic Press: 613pp. Search in Google Scholar

[6] Bradley RS and Jones PD, 1993. ‘Little Ice Age’ Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends. The Holocene 3(4): 367–376, DOI 10.1177/095968369300300409. http://dx.doi.org/10.1177/09596836930030040910.1177/095968369300300409Search in Google Scholar

[7] Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P and Eronen M, 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7(3): 111–119, DOI 10.1007/BF00211153. http://dx.doi.org/10.1007/BF0021115310.1007/BF00211153Search in Google Scholar

[8] Briffa KR, Jones PD, Pilcher JR and Hughes MK, 1988. Reconstructing summer temperatures in northern Fennoscandinavia back to A.D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research 20(4): 385–394. http://dx.doi.org/10.2307/155133610.2307/1551336Search in Google Scholar

[9] Briffa KR, Jones PD, Schweingruber FH and Osborn TJ, 1998. Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years. Nature 393: 450–455, DOI 10.1038/30943. http://dx.doi.org/10.1038/3094310.1038/30943Search in Google Scholar

[10] Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG and Vaganov EA, 2002a. Tree ring width and density data around the Northern Hemisphere. Part 1. Local and regional climate signals. The Holocene 12(6): 737–751, DOI 10.1191/0959683602hl587rp. http://dx.doi.org/10.1191/0959683602hl587rp10.1191/0959683602hl587rpSearch in Google Scholar

[11] Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG and Vaganov EA, 2002b. Tree ring width and density data around the Northern Hemisphere. Part 2. Spatio-temporal variability and associated climate patterns. The Holocene 12(6): 759–789, DOI 10.1191/0959683602hl588rp. http://dx.doi.org/10.1191/0959683602hl588rp10.1191/0959683602hl588rpSearch in Google Scholar

[12] Brugnoli E, Solomina O, Spaccino L and Dolgova E, 2010. Climate signal in the ring width, density and carbon stable isotopes in pine (Pinus silvestris L.) in Central Caucasus. Geography, Environment, Sustainability 3: 4–16. 10.24057/2071-9388-2010-3-4-4-16Search in Google Scholar

[13] Büntgen U, Raible CC, Frank D, Helama S, Cunningham L, Hofer D, Nievergelt D, Verstege A, Timonen M, Stenseth NC and Esper J, 2011. Causes and Consequences of Past and Projected Scandinavian Summer Temperatures, 500–2100 AD. PLoS ONE 6(9): e25133, DOI 10.1371/journal.pone.0025133. http://dx.doi.org/10.1371/journal.pone.002513310.1371/journal.pone.0025133317861121966436Search in Google Scholar

[14] Burg JP, 1978. A new analysis technique for time series data. In: Childers DG, ed, Modern Spectrum Analysis. New York, IEEE Press, 42–48. Search in Google Scholar

[15] Cook ER and Peters K, 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bulletin 41: 45–53. Search in Google Scholar

[16] Cook E, Shiyatov S and Mazepa V, 1990. Estimation of the mean chronology. In: Cook E and Kairiukstis LA, eds, Methods of dendrochronology: applications in the environmental science. Dordrecht, Kluwer Academic Publishers, 123–132. http://dx.doi.org/10.1007/978-94-015-7879-010.1007/978-94-015-7879-0Search in Google Scholar

[17] Ebisuzaki W, 1997. A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate 10(9): 2147–2153, DOI 10.1175/1520-0442(1997)010〈2147:AMTETS〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;210.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2Search in Google Scholar

[18] Eddy JA, 1976. The Maunder Minimum. Science 192: 1189–1202, DOI 10.1126/science.192.4245.1189. http://dx.doi.org/10.1126/science.192.4245.118910.1126/science.192.4245.1189Search in Google Scholar

[19] Efron B and Tibshirani R, 1986. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1: 54–75, DOI 10.1214/ss/1177013815. http://dx.doi.org/10.1214/ss/117701381510.1214/ss/1177013815Search in Google Scholar

[20] Eronen M, Hyvärinen H and Zetterberg P, 1999. Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree rings. The Holocene 9(5): 569–580, DOI 10.1191/095968399677209885. http://dx.doi.org/10.1191/09596839967720988510.1191/095968399677209885Search in Google Scholar

[21] Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J and Timonen M, 2002. The supralong Scots pine treering record for Finnish Lapland: part 1, chronology construction and initial references. The Holocene 12(6): 673–680, DOI 10.1191/0959683602hl580rp. http://dx.doi.org/10.1191/0959683602hl580rp10.1191/0959683602hl580rpSearch in Google Scholar

[22] Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A and Büntgen U, 2012. Orbital forcing of tree-ring data. Nature Climate Change 2: 862–866, DOI 10.1038/nclimate1589. http://dx.doi.org/10.1038/nclimate158910.1038/nclimate1589Search in Google Scholar

[23] Fritts HC, 1976. Tree rings and climate. New York, Academic Press: 567pp. Search in Google Scholar

[24] Gordon GA, Gray BM and Pilcher JR, 1982. Verification of dendrocli-matic reconstructions. In: Hughes MK, Kelly PM, Pilcher JR and LaMarche Jr. VC, eds, Climate from Tree Rings. Cambridge, Cambridge University Press, 115–132. Search in Google Scholar

[25] Grissino-Mayer HD and Fritts HC, 1997. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. The Holocene 7(2): 235–238, DOI 10.1177/095968369700700212. http://dx.doi.org/10.1177/09596836970070021210.1177/095968369700700212Search in Google Scholar

[26] Grudd H, 2008. Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31(7–8): 843–857, DOI 10.1007/s00382-007-0358-2. http://dx.doi.org/10.1007/s00382-007-0358-210.1007/s00382-007-0358-2Search in Google Scholar

[27] Grudd H, Briffa KR, Gunnarson BE and Linderholm HW, 2000. Swedish tree rings provide new evidence in support of a major, wide-spread environmental disruption in 1628 BC. Geophysical Research Letters 27: 2957–2960, DOI 10.1029/1999GL010852. http://dx.doi.org/10.1029/1999GL01085210.1029/1999GL010852Search in Google Scholar

[28] Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD and Kromer B, 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. The Holocene 12(6): 657–665, DOI 10.1191/0959683602hl578rp. http://dx.doi.org/10.1191/0959683602hl578rp10.1191/0959683602hl578rpSearch in Google Scholar

[29] Gunnarson BE, Linderholm HW and Moberg A, 2011. Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Climate Dynamics 36(1–2): 97–108, DOI 10.1007/s00382-010-0783-5. http://dx.doi.org/10.1007/s00382-010-0783-510.1007/s00382-010-0783-5Search in Google Scholar

[30] Helama S, Arentoft BW, Collin-Haubensak O, Hyslop MD, Brandstrup CK, Mäkelä HM, Tian QH and Wilson R, 2013a. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecological Research 28(6): 1019–1028, DOI 10.1007/s11284-013-1084-3. http://dx.doi.org/10.1007/s11284-013-1084-310.1007/s11284-013-1084-3Search in Google Scholar

[31] Helama S, Bégin Y, Vartiainen M, Peltola H, Kolström T and Meriläinen J, 2012a. Quantifications of dendrochronological information from contrasting microdensitometric measuring circum-stances of experimental wood samples. Applied Radiation and Isotopes 70(6): 1014–1023, DOI 10.1016/j.apradiso.2012.03.025. http://dx.doi.org/10.1016/j.apradiso.2012.03.02510.1016/j.apradiso.2012.03.02522480911Search in Google Scholar

[32] Helama S, Holopainen J, Macias-Fauria M, Timonen M and Mielikäinen K, 2013b. A chronology of climatic downturns through the mid- and late-Holocene: tracing the distant effects of explosive eruptions from palaeoclimatic and historical evidence in northern Europe. Polar Research 32: 15866, DOI 10.3402/polar.v32i0.15866. http://dx.doi.org/10.3402/polar.v32i0.1586610.3402/polar.v32i0.15866Search in Google Scholar

[33] Helama S, Lindholm M, Meriläinen J, Timonen M and Eronen M, 2005a. Multicentennial ring-width chronologies of Scots pine along north-south gradient across Finland. Tree-ring Research 61: 21–32, DOI 10.3959/1536-1098-61.1.21. http://dx.doi.org/10.3959/1536-1098-61.1.2110.3959/1536-1098-61.1.21Search in Google Scholar

[34] Helama S, Lindholm M, Timonen M, Meriläinen J and Eronen M, 2002. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer tempera-tures for 7500 years. The Holocene 12(6): 681–687, DOI 10.1191/0959683602hl581rp. http://dx.doi.org/10.1191/0959683602hl581rp10.1191/0959683602hl581rpSearch in Google Scholar

[35] Helama S, Macias Fauria M, Mielikäinen K, Timonen M and Eronen M, 2010a. Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geological Society of America Bulletin 122(11–12): 1981–1988, DOI 10.1130/B30088.1. http://dx.doi.org/10.1130/B30088.110.1130/B30088.1Search in Google Scholar

[36] Helama S, Makarenko NG, Karimova LM, Kruglun OA, Timonen M, Holopainen J, Meriläinen J and Eronen M, 2009a. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms. Annales Geophysicae 27(3):1097–1111, DOI 10.5194/angeo-27-1097-2009. http://dx.doi.org/10.5194/angeo-27-1097-200910.5194/angeo-27-1097-2009Search in Google Scholar

[37] Helama S, Mielikäinen K, Timonen M and Eronen M, 2008a. Finnish supra-long tree-ring chronology extended to 5634 BC. Norwegian Journal of Geography 62(4): 271–277, DOI 10.1080/00291950802517593. 10.1080/00291950802517593Search in Google Scholar

[38] Helama S, Seppä H, Birks HJB and Bjune AE, 2010b. Reconciling pollen-stratigraphical and tree-ring evidence for high- and low-frequency temperature variability in the past millennium. Quaternary Science Reviews 29(27–28): 3905–3918, DOI 10.1016/j.quascirev.2010.09.012. http://dx.doi.org/10.1016/j.quascirev.2010.09.01210.1016/j.quascirev.2010.09.012Search in Google Scholar

[39] Helama S, Seppä H, Bjune AE and Birks HJB, 2012b. Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. Journal of Paleolimnology 48(1): 275–286, DOI 10.1007/s10933-012-9598-1. http://dx.doi.org/10.1007/s10933-012-9598-110.1007/s10933-012-9598-1Search in Google Scholar

[40] Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M and Meriläinen J, 2009b. Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. Journal of Quaternary Science 24(5): 450–456, DOI 10.1002/jqs.1291. http://dx.doi.org/10.1002/jqs.129110.1002/jqs.1291Search in Google Scholar

[41] Helama S, Timonen M, Lindholm M, Meriläinen J and Eronen M, 2005b. Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. International Journal of Climatology 25(13): 1767–1779, DOI 10.1002/joc.1215. http://dx.doi.org/10.1002/joc.121510.1002/joc.1215Search in Google Scholar

[42] Helama S, Meriläinen J and Tuomenvirta H, 2009c. Multicentennial megadrought in northern Europe coincided with a global El Niño-Southern Oscillation drought pattern during the Medieval Climate Anomaly. Geology 37(2): 175–178, DOI 10.1130/G25329A.1. http://dx.doi.org/10.1130/G25329A.110.1130/G25329A.1Search in Google Scholar

[43] Helama S, Vartiainen M, Kolström T and Meriläinen J, 2010c. Dendro-chronological investigation of wood extractives. Wood Science and Technology 44(2): 335–351, DOI 10.1007/s00226-009-0293-y. http://dx.doi.org/10.1007/s00226-009-0293-y10.1007/s00226-009-0293-ySearch in Google Scholar

[44] Helama S, Vartiainen M, Kolström T, Peltola H and Meriläinen J, 2008b. X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Vegetation History and Archaeobotany 17(6): 675–686, DOI 10.1007/s00334-008-0147-9. http://dx.doi.org/10.1007/s00334-008-0147-910.1007/s00334-008-0147-9Search in Google Scholar

[45] Henttonen H, 1984. The dependence of annual ring indices on some climatic factors. Acta Forestalia Fennica 186: 1–38. 10.14214/aff.7633Search in Google Scholar

[46] Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78. Search in Google Scholar

[47] Holopainen J, 2004. The early climatological records of Turku. Finnish Meteorological Institute, Reports 2004/8: 1–59. Search in Google Scholar

[48] Holopainen J, Helama S, Kajander J M, Korhonen J, Launiainen J, Nevanlinna H, Reissell A and Salonen V-P, 2009. A multiproxy reconstruction of spring temperatures in south-west Finland since 1750. Climatic Change 92(1–2): 213–233, DOI 10.1007/s10584-008-9477-y. http://dx.doi.org/10.1007/s10584-008-9477-y10.1007/s10584-008-9477-ySearch in Google Scholar

[49] Hoyt DV and Schatten KH, 1998. Group Sunspot Numbers: A New Solar Activity Reconstruction. Solar Physics 179(1): 189–219, DOI 10.1023/A:1005007527816. http://dx.doi.org/10.1023/A:100500752781610.1023/A:1005007527816Search in Google Scholar

[50] Jones PD and Lister DH, 2002. The daily temperature record for St. Petersburg (1743–1996). Climatic Change 53(1–3): 253–267, DOI 10.1023/A:1014918808741. http://dx.doi.org/10.1023/A:101491880874110.1023/A:1014918808741Search in Google Scholar

[51] Jones PD, Melvin TM, Harpham C, Grudd H and Helama S, 2013. Cool North European summers and possible links to explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres 118(12): 6259–6265, DOI 10.1002/jgrd.50513. 10.1002/jgrd.50513Search in Google Scholar

[52] Jutikkala E, 2003a. Halla aina uhkana (Frost as a constant threat in agriculture). Suomalaisen Kirjallisuuden Seuran toimituksia 914: 292–299. Search in Google Scholar

[53] Jutikkala E, 2003b. Katovuodet (Crop failure years). Suomalaisen Kirjallisuuden Seuran toimituksia 914: 504–513. Search in Google Scholar

[54] Koprowski M, Przybylak R, Zielski A and Pospieszyńska A, 2012. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland. International Journal of Biometeorology 56(1): 1–10, DOI 10.1007/s00484-010-0390-5. http://dx.doi.org/10.1007/s00484-010-0390-510.1007/s00484-010-0390-5324538321174127Search in Google Scholar

[55] Läänelaid A, 2000. Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry, Research Notes 108: 119–128. Search in Google Scholar

[56] Läänelaid A and Eckstein D, 2003. Development of a tree-ring chronology of Scots pine (Pinus sylvestris L.) for Estonia as a dating tool and climatic proxy. Baltic Forestry 9(2): 76–82. Search in Google Scholar

[57] Lappalainen M, 2001. Suomen kansallispuistot. Ulapalta paljakalle (Finland’s National Parks — Seas of Blue, Seas of Green). Metsähallitus, Vantaa: 168 (in Finnish) pp. Search in Google Scholar

[58] Linderholm HW and Gunnarson BE, 2005. Summer temperature variability in central Scandinavia during the last 3600 years. Geografiska Annaler 87A: 231–241, DOI 10.1111/j.0435-3676.2005.00255.x. http://dx.doi.org/10.1111/j.0435-3676.2005.00255.x10.1111/j.0435-3676.2005.00255.xSearch in Google Scholar

[59] Lindholm M, Meriläinen J and Eronen M, 1998–1999. A 1250-year ring-width chronology of Scots pine for south-eastern Finland, in the southern part of the boreal forest belt. Dendrochronologia 16–17: 183–190. Search in Google Scholar

[60] Ljungqvist FC, Krusic PJ, Brattström G and Sundqvist HS, 2012. Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past 8(1): 227–249, DOI 10.5194/cp-8-227-2012. http://dx.doi.org/10.5194/cp-8-227-201210.5194/cp-8-227-2012Search in Google Scholar

[61] Luoto TP and Helama S, 2010. Palaeoclimatological and palaeolimno-logical records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Reviews 29(17–18): 2411–2423, DOI 10.1016/j.quascirev.2010.06.015. http://dx.doi.org/10.1016/j.quascirev.2010.06.01510.1016/j.quascirev.2010.06.015Search in Google Scholar

[62] Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C and Wanner H, 2001. The Late Maunder Minimum (1675–1715) — A Key Period for Studying Decadal Scale Climatic Change in Europe. Climatic Change 49(4): 441–462, DOI 10.1023/A:1010667524422. http://dx.doi.org/10.1023/A:101066752442210.1023/A:1010667524422Search in Google Scholar

[63] Macias Fauria M, Grinsted A, Helama S, Moore J, Timonen M, Martma T, Isaksson E and Eronen M, 2010. Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since A.D. 1200. Climate Dynamics 34(6): 781–795, DOI 10.1007/s00382-009-0610-z. http://dx.doi.org/10.1007/s00382-009-0610-z10.1007/s00382-009-0610-zSearch in Google Scholar

[64] Macias-Fauria M, Grinsted A, Helama S and Holopainen J, 2012. Persistence matters: Estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series. Dendrochronologia 30(2): 179–187, DOI 10.1016/j.dendro.2011.08.003. http://dx.doi.org/10.1016/j.dendro.2011.08.00310.1016/j.dendro.2011.08.003Search in Google Scholar

[65] Mann ME, Bradley RS and Hughes MK, 1999. Northern Hemisphere Temperatures During the Past Millennium: Inferences, Uncertainties, and Limitations. Geophysical Research Letters 26(6): 759–762, DOI 10.1029/1999GL900070. http://dx.doi.org/10.1029/1999GL90007010.1029/1999GL900070Search in Google Scholar

[66] Matthews JA and Briffa KR, 2005. The ‘Little Ice Age’: Reevaluation of an Evolving Concept. Geografiska Annaler 87A: 17–36, DOI 10.1111/j.0435-3676.2005.00242.x. http://dx.doi.org/10.1111/j.0435-3676.2005.00242.x10.1111/j.0435-3676.2005.00242.xSearch in Google Scholar

[67] Melander KR and Melander G, 1928. Katovuosista Suomessa. In: Krohn K, ed, Oma maa V. Porvoo, Werner Söderström Osakeyhtiö, 350–359 (In Finnish). Search in Google Scholar

[68] Meriläinen J and Timonen M, 2004. Tree-ring data bank of Saima centre for environmental sciences in Savonlinna [Contribution to The International Tree-Ring Data Bank] Search in Google Scholar

[69] Miina J, 2000. Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecological Modelling 132(3): 259–273, DOI 10.1016/S0304-3800(00)00296-9. http://dx.doi.org/10.1016/S0304-3800(00)00296-910.1016/S0304-3800(00)00296-9Search in Google Scholar

[70] Mikola P, 1950. Tree growth in years of crop failure. Metsätaloudellinen aikakauslehti 67: 204–205. Search in Google Scholar

[71] Moberg A and Bergström H, 1997. Homogenization of Swedish temperature data. Part III: The long temperature records from Uppsala and Stockholm. International Journal of Climatology 17(7): 667–699, DOI 10.1002/(SICI)1097-0088(19970615)17:7〈667::AID-JOC115〉3.0.CO;2-J. http://dx.doi.org/10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-J10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-JSearch in Google Scholar

[72] Osborn TJ, Briffa KR and Jones PD, 1997. Adjusting variance for sample size in tree ring chronologies and other regional mean timeseries. Dendrochronologia 15: 89–99. Search in Google Scholar

[73] Peltola H, Kilpeläinen A, Sauvala K, Räisänen T and Ikonen V-P, 2007. Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica 41(3): 489–505, DOI 10.14214/sf.285. http://dx.doi.org/10.14214/sf.28510.14214/sf.285Search in Google Scholar

[74] Schweingruber FH, Bartholin TS, Schär E and Briffa KR, 1988. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17(4): 559–566, DOI 10.1111/j.1502-3885.1988.tb00569.x. http://dx.doi.org/10.1111/j.1502-3885.1988.tb00569.x10.1111/j.1502-3885.1988.tb00569.xSearch in Google Scholar

[75] Schweingruber FH, Bräker OU and Schär E, 1987. Temperature information from a European dendroclimatological sampling network. Dendrochronologia 5: 9–33. Search in Google Scholar

[76] Schweingruber FH, Briffa KR and Jones PD, 1991. Yearly maps of summer temperatures in western Europe from A.D. 1750 to 1975 and western North America from 1600 to 1982. Results of a radiodensitometrical study on tree rings. Vegetatio 92(1): 5–71, DOI 10.1007/BF00047132. Search in Google Scholar

[77] Shindell DT, Schmidt GA, Mann ME, Rind D and Waple A, 2001. Solar Forcing of Regional Climate Change During the Maunder Minimum. Science 294: 2149–2152, DOI 10.1126/science.1064363. http://dx.doi.org/10.1126/science.106436310.1126/science.1064363Search in Google Scholar

[78] Tietäväinen H, Tuomenvirta H and Venäläinen A, 2010. Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology 30(15): 2247–2256, DOI 10.1002/joc.2046. http://dx.doi.org/10.1002/joc.204610.1002/joc.2046Search in Google Scholar

[79] Virkkala R, Korhonen KT, Haapanen R and Aapala K, 2000. Protected forests and mires in forest and mire vegetation zones in Finland based on the 8th National Forest Inventory. The Finnish Environment 395: 1–49. Search in Google Scholar

[80] Walker MJC, 2005. Quaternary Dating Methods. Chichester, Wiley: 286pp. Search in Google Scholar

[81] Warren WG, 1980. On removing the growth trend from dendrochronological data. Tree Ring Bulletin 40: 35–44. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo