1. bookVolume 41 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Open Access

Absolute chronology of fluvial events in the Upper Dnieper River system and its palaeogeographic implications

Published Online: 22 Jun 2014
Volume & Issue: Volume 41 (2014) - Issue 3 (September 2014)
Page range: 278 - 293
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

A set of 121 radiocarbon and OSL dates has been compiled from the Upper Dnieper River and tributary valleys, Western European Russia. Each date was attributed according to geomorphic/sedimentological events and classes of fluvial activity. Summed probability density functions for each class were used to establish phases of increasing and reducing fluvial activity. The oldest detected reduction of fluvial activity was probably due to glacial damming at LGM. Within the Holocene three palaeohydrological epochs of millennial-scale were found: (1) high activity at 12,000–8,000 cal BP marked by large river palaeochannels; (2) low activity at 8,000–3,000 cal BP marked by formation of zonal-type soils on -floodplains; short episodes of high floods occurred between 6,500—4,400 cal BP; (3) contrasting hydrological oscillations since 3,000 cal BP with periods of high floods between 3,000–2,300 (2,000) and 900–100 cal BP separated by long interval of low floods 2,300 (2,000)-900 cal BP when floodplains were not inundated — zonal-type soils were developing and permanent settlements existed on floodplains. In the last millennium, four centennial-scale intervals were found: high flooding intervals are mid-11–mid-15th century and mid-17–mid-20th century. Intervals of flood activity similar to the present-day were: mid-15–mid-17th century and since mid-19th century till present. In the context of palaeohydrological changes, discussed are selected palaeogeographic issues such as: position of the glacial boundary at LGM, role of changing amounts of river runoff in the Black Sea level changes, floodplain occupation by Early Medieval population.

Keywords

[1] Aleksandroskiy AL, Krenke NA and Nefedov VS, 2005. Paleorelief vysokoy poimy Dnepra na territorii Gnezdovskogo archeologicheskogo kompleksa (Paleotopography of the Dnieper River high floodplain at the Gnezdovo archaeological site). Rossiyskaya Archeologia 1: 112–123 (in Russian). Search in Google Scholar

[2] Arbogast AF, Bookout JR, Schrotenboer BR, Lansdale A, Rust GL and Bato VA, 2008. Post-glacial fluvial response and landform development in the upper Muskegon River valley in North-Central Lower Michigan, U.S.A. Geomorphology 102(3–4): 615–623, DOI 10.1016/j.geomorph.2008.06.008. http://dx.doi.org/10.1016/j.geomorph.2008.06.00810.1016/j.geomorph.2008.06.008Search in Google Scholar

[3] Barashkova ZK, Lavrovich ON, Briukov IP and Shuleshkina EA, 1998. Karta chetvertichnykh otlozheniy Smolenskoy oblasti (Map of Quaternary deposits, the Smolensk Region, scale 1:500000). Ministry of Natural Resources of Russia (in Russian). Search in Google Scholar

[4] Belyaev VR, Golosov VN, Markelov, MV, Evrard O, Ivanova NN, Paramonova TA and Shamshurina EN, 2013. Using Chernobylderived 137Cs to document recent sediment deposition rates on the River Plava floodplain (Central European Russia). Hydrological Processes 27(6): 807–821, DOI 10.1002/hyp.9461. http://dx.doi.org/10.1002/hyp.946110.1002/hyp.9461Search in Google Scholar

[5] Borisova O, Sidorchuk A and Panin A, 2006. Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. Catena 66(1–2): 53–73, DOI 10.1016/j.catena.2005.07.010. http://dx.doi.org/10.1016/j.catena.2005.07.01010.1016/j.catena.2005.07.010Search in Google Scholar

[6] Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337–360. 10.1017/S0033822200033865Search in Google Scholar

[7] Bronnikova MA and Uspenskaya ON, 2007. Pozdnegolocenovaya evolutcia rastitel’nosti i landshafta na teritorii Gnezdovskogo archeologicheskogo kompleksa (Vegetation and landscape changes at the Gnezdovo archaeological site in the Late Holocene). Gnezdovo: resul’taty kompleksnykh issledovaniy pamiatnika. Murasheva VV, ed. Moscow, State Historical Museum: 162–182 (in Russian). Search in Google Scholar

[8] Bronnikova MA, Zazovskaya EP and Bobrov AA, 2003. Local landscape evolution related to human impact of an early medieval preurban center in the Upper Dnieper region (Central Russian Plain): an interdisciplinary experience. Revista Mexicana de Ciencias Geológicas 20(3): 245–262. Search in Google Scholar

[9] Bronnikova MA, Zazovskaya EP and Bobrov AA, 2003. Local landscape evolution related to human impact of an early medieval preurban center in the Upper Dnieper region (Central Russian Plain): an interdisciplinary experience. Revista Mexicana de Ciencias Geológicas 20(3): 245–262. Search in Google Scholar

[10] Butakov GP, Kutbanova SG, Panin AV, Perevoschikov AA and Serebrennikova IA, 2000. Formirovanie antropogenno obuslovlennogo nailka na poimakh rek Russkoi ravniny (Human-induced alluviation on river floodplains in the Russian Plain). In: Erosionnye i Ruslovye Processy, Issue 3, Moscow, MSU Press: 78–92. Search in Google Scholar

[11] Gębica P, 2011. Stratigraphy of alluvial fills and phases of the Holocene floods in the lower Wislok river, SE Poland. Geographia Polonica 84,Special Issue Part I: 39–60. http://dx.doi.org/10.7163/GPol.2011.S1.410.7163/GPol.2011.S1.4Search in Google Scholar

[12] Gębica P, 2013. Chronostratigraphy of alluvia and age of fluvial landforms in the Carpathian Foreland during the Vistulian. Studia Quaternaria 30(1): 19–27. 10.2478/squa-2013-0002Search in Google Scholar

[13] Gębica P, Szczepanek K and Wieczorek D, 2009. Late Vistulian alluvial filling in the San River valley in the Carpathian foreland (north of Jarosław town). Studia Geomorphologica Carpatho-Balcanica XLIII: 39–61. Search in Google Scholar

[14] Gębica P, Starkel L, Jacysyn A and Krapiec M, 2013. Medieval accumulation in the Upper Dniester river valley: the role of human impact and climate change in the Carpathian foreland. Quaternary International 293: 207–218, DOI 10.1016/j.quaint.2012.05.046. http://dx.doi.org/10.1016/j.quaint.2012.05.04610.1016/j.quaint.2012.05.046Search in Google Scholar

[15] Golosov VN, 2009. Issledovania akkumulacii nanosov na poimakh rek: potencial’nie metody I perspektivy (Investigations of sediment deposition on the floodplains: Potentials of methods and perspectives). Geomorfologiya 4: 39–45 (in Russian). 10.15356/0435-4281-2009-4-39-44Search in Google Scholar

[16] Harden T, Macklin MG and Baker VR, 2010. Holocene flood histories in south-western USA. Earth Surface Processes and Landforms 35(6): 707–716, DOI 10.1002/esp.1983. 10.1002/esp.1983Search in Google Scholar

[17] Hoffmann T, Lang A and Dikau R, 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews 27(21–22): 2031–2040, DOI 10.1016/j.quascirev.2008.06.014. http://dx.doi.org/10.1016/j.quascirev.2008.06.01410.1016/j.quascirev.2008.06.014Search in Google Scholar

[18] Howard AJ, Macklin MG, Bailey DW, Mills S and Andreescu R, 2004. Late-glacial and Holocene river development in the Teleorman Valley on the southern Romanian Plain. Journal of Quaternary Science 19(3): 271–280, DOI 10.1002/jqs.805. http://dx.doi.org/10.1002/jqs.80510.1002/jqs.805Search in Google Scholar

[19] Johnstone E, Macklin M and Lewin J, 2006. The development and application of a database of radiocarbon-dated Holocene fluvial deposits in Great Britain. Catena 66(1–2): 14–23, DOI 10.1016/j.catena.2005.07.006. http://dx.doi.org/10.1016/j.catena.2005.07.00610.1016/j.catena.2005.07.006Search in Google Scholar

[20] Kalicki T, 1995. Late Glacial and Holocene evolution of some river valleys in Byelorussia. Paläoklimaforschung 14: 89–100. Search in Google Scholar

[21] Kalicki T, 2006. Zapis zmian klimatu oraz działalności człowieka i ich rola w holoceńskiej ewolucji dolin środkowoeuropejskich (Reflection of climatic changes and human activity and their role in the Holocene evolution of Central European valleys). Prace Geograficzne Nr 204 (Geographical Studies No.204). IGiPZ PAN, Warszawa, 2006. 348 p. Search in Google Scholar

[22] Kalicki T and Sańko A, 1992. Genesis and age of terraces of the Dnieper River between Orsha and Shklow, Byelorussia. Geographia Polonica 60: 151–174. Search in Google Scholar

[23] Kalicki T and Sańko AF, 1998. Palaeohydrological changes in the upper Dneper valley during the last 20 000 years (Belarus). In: Palaeohydrology and Environmental Change (G. Benito, V. R. Baker, K. J. Gregory, eds), Wiley, Chichester: 125–135. Search in Google Scholar

[24] Kalicki T, Sauchyk S, Calderoni G and Simakova G, 2008. Climatic versus human impact on the Holocene sedimentation in river valleys of different order: Examples from the upper Dnieper basin, Belarus. Quaternary International 189(1): 91–105, DOI 10.1016/j.quaint.2007.09.028. http://dx.doi.org/10.1016/j.quaint.2007.09.02810.1016/j.quaint.2007.09.028Search in Google Scholar

[25] Kasse C, Bohncke SJP, Vandenberghe J and Gábris G, 2010. Fluvial style changes during the last glacial-interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists’ Association 121(2): 180–194. http://dx.doi.org/10.1016/j.pgeola.2010.02.00510.1016/j.pgeola.2010.02.005Search in Google Scholar

[26] Kvasov DD, 1979. The Late Quaternary history of large lakes and inland seas of Eastern Europe. Annales Academiae Fennicae. Ser. A III 12: 1–71. Search in Google Scholar

[27] Lang A, 2003. Phases of soil erosion-derived colluviation in the loess hills of South Germany. Catena 51(3–4): 209–221, DOI 10.1016/S0341-8162(02)00166-2. http://dx.doi.org/10.1016/S0341-8162(02)00166-210.1016/S0341-8162(02)00166-2Search in Google Scholar

[28] Leigh DS, 2006. Terminal Pleistocene braided to meandering transition in rivers of the Southeastern USA. Catena 66(1–2): 155–160, DOI 10.1016/j.catena.2005.11.008. http://dx.doi.org/10.1016/j.catena.2005.11.00810.1016/j.catena.2005.11.008Search in Google Scholar

[29] Lericolais G, Guichard F, Morigi C, Popescu I, Bulois C, Gillet H and Ryan WBF, 2011. Assessment of Black Sea water-level fluctuations since the Last Glacial Maximum. Geological Society of America Special Papers 473: 33–50. http://dx.doi.org/10.1130/2011.2473(03)10.1130/2011.2473(03)Search in Google Scholar

[30] Lericolais G, Guichard F, Morigi C, Minereau A, Popescu I and Radan S, 2010. A post Younger Dryas Black Sea regression identified from sequence stratigraphy correlated to core analysis and dating. Quaternary International 225(1): 199–209, DOI 10.1016/j.quaint.2010.02.003. http://dx.doi.org/10.1016/j.quaint.2010.02.00310.1016/j.quaint.2010.02.003Search in Google Scholar

[31] Lewin J, Macklin MG and Johnstone EC, 2005. Interpreting alluvial archives: sedimentological factors in the British Holocene fluvial record. Quaternary Science Reviews 24(16–17): 1873–1889, DOI 10.1016/j.quascirev.2005.01.009. http://dx.doi.org/10.1016/j.quascirev.2005.01.00910.1016/j.quascirev.2005.01.009Search in Google Scholar

[32] Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michczynska DJ, Soja R, Starkel L and Thorndycraft VR, 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66(1–2): 145–154, DOI 10.1016/j.catena.2005.07.015. http://dx.doi.org/10.1016/j.catena.2005.07.01510.1016/j.catena.2005.07.015Search in Google Scholar

[33] Macklin MG and Lewin J, 1993. Holocene river alluviation in Britain. Zeitschrift für Geomorphologie, Supplementbände 88: 109–122. Search in Google Scholar

[34] Macklin MG, Johnstone E and Lewin J, 2005. Pervasive and long-term forcing of Holocene river instability and flooding in Great Britain by centennial-scale climate change. The Holocene 15(7): 937–943, DOI 10.1191/0959683605hl867ft. http://dx.doi.org/10.1191/0959683605hl867ft10.1191/0959683605hl867ftSearch in Google Scholar

[35] Macklin MG and Lewin J, 2003. River sediments, great floods and centennial-scale Holocene climate change. Journal of Quaternary Science 18(2): 101–105, DOI 10.1002/jqs.751. http://dx.doi.org/10.1002/jqs.75110.1002/jqs.751Search in Google Scholar

[36] Major CO, Goldstein SL, Ryan WBF, Lericolais G, Piotrowski AM and Hajdas I, 2006. The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews 25(17–18): 2031–2047, DOI 10.1016/j.quascirev.2006.01.032. http://dx.doi.org/10.1016/j.quascirev.2006.01.03210.1016/j.quascirev.2006.01.032Search in Google Scholar

[37] Murasheva VV, Panin AV and Fetisov AA, 2009. Mezhdisciplinarnye issledovania v arkheologii (po rezul’tatam issledovania Gnezdovskogo arkheologicheskogo kompleksa (Multi-disciplinary investigations in archaeology: the Gnezdovo archaeological site case study. Srednie Veka 70(3): 132–147 (in Russian). Search in Google Scholar

[38] Panin AV, Fuzeina JN and Belyaev VR, 2009. Long-term development of Holocene and Pleistocene gullies in the Protva River basin, Central Russia. Geomorphology 108(1–2): 71–91, DOI 10.1016/j.geomorph.2008.06.017. http://dx.doi.org/10.1016/j.geomorph.2008.06.01710.1016/j.geomorph.2008.06.017Search in Google Scholar

[39] Panin AV, Sidorchuk AJ, Baslerov SV, Borisova OK, Kovaliukh NN and Sheremetskaya ED, 2001. Osnovnye etapy istorii rechnykh dolin centra Russkoy ravniny v pozdnem valdae I Holocene (Main stages of river valley development in the centre of the Russian Plain in the Late Valdai — Holocene time). Geomorfologia 2: 19–34 (in Russian). Search in Google Scholar

[40] Panin AV and Nefedov VS, 2010. Analysis of Variations in the Regime of Rivers and Lakes in the Upper Volga and Upper Zapadnaya Dvina Based on Archaeological-Geomorphological Data. Water Resources 37(1): 16–32. http://dx.doi.org/10.1134/S009780781001002110.1134/S0097807810010021Search in Google Scholar

[41] Pushkina TA, Murasheva VV and Nefedov VS, 2001. Novoe v izuchenii central’nogo selischa v Gnezdove (New studies of the Central settlement in Gnezdovo). Trudy GIM, 124.Gnezdovo: 125 let izychenia pamyatnika. Moscow: 12–26 (in Russian). Search in Google Scholar

[42] Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG Bronk Ramsey C, Buck CE, Burr GS, Edwards R, Friedrich M, Grootes PM, Guilderson, TP Hajdas I Heaton TJ Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning FG, McCormac SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM van der Plicht J and Weyhenmeyer CE, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–1150. 10.1017/S0033822200034202Search in Google Scholar

[43] Salov IN, 1972. Granitsy Moscovskogo i Valdaiskogo lednikovykh schitov v ikh maksimal’nye phasy v Byelorussu i v Smolenskoy oblasti i ikh konechno-morennye compleksy (Boundaries of Moscovian and Valdaian ice sheets at their maximal phases in Byelirussia and Smolensk Region, and their endmorain complexes). In: Kraevye obrazovania materikovykh oledeneniy. Moscow: Nauka: 145–154 (in Russian). Search in Google Scholar

[44] Sidorchuk AY, Panin AV and Borisova OK, 2011. Surface runoff to the Black Sea from the East European Plain during Last Glacial Maximum — Lat Glacial time. Geological Society of America Special Papers 473: 1–25. http://dx.doi.org/10.1130/2011.2473(01)10.1130/2011.2473(01)Search in Google Scholar

[45] Sidorchuk A, Panin A and Borisova O, 2009. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 113(3–4): 137–157, DOI 10.1016/j.geomorph.2009.03.007. http://dx.doi.org/10.1016/j.geomorph.2009.03.00710.1016/j.geomorph.2009.03.007Search in Google Scholar

[46] Sidorchuk AY, Panin AV and Borisova OK, 2012. River Runoff Decrease in North Eurasian Plains during the Holocene Optimum. Water Resources 39(1): 69–81. http://dx.doi.org/10.1134/S009780781201011310.1134/S0097807812010113Search in Google Scholar

[47] Starkel L and Gębica P, 1995. Evolution of river valleys in southern Poland during the Pleistocene-Holocene transition. Biuletyn Peryglacjalny 34: 177–190. Search in Google Scholar

[48] Starkel L, Kalicki T, Krąpiec M, Soja R, Gębica P and Czyżowska E, 1996. Hydrological changes of valley floor in the Upper Vistula basin during Late Vistulian and Holocene. In L. Starkel (Ed.), Evolution of the Vistula river valley during the last 15 000 years. Quaestiones Geographicae, Special Issue 9: 7–128. Search in Google Scholar

[49] Starkel L, Soja R, Michczynska DJ, 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66(1–2): 24–33, DOI 10.1016/j.catena.2005.07.008. http://dx.doi.org/10.1016/j.catena.2005.07.00810.1016/j.catena.2005.07.008Search in Google Scholar

[50] Stolyarova TI, 1970. Karta chetvertichnykh otlozheniy, kvadrat N-36-VIII, masshtab 1: 200 000 (Map of Quaternary deposits, quadrangle N-36-VIII, scale 1: 200 000). Moscow; VAGT MinGeo USSR (in Russian). Search in Google Scholar

[51] Sukhodolov AN, Arnaut NA, Kudersky LA, Loboda NS, Bekh VV, Skakalsky BG, Katolikov VM and Usatii MA, 2009. Western Steppic Rivers. In: Rivers of Europe (K. Tockner, U. Uehlinger, C.T. Robinson, eds). Elsevier-Academic Press, Amsterdam: 497–523. http://dx.doi.org/10.1016/B978-0-12-369449-2.00013-810.1016/B978-0-12-369449-2.00013-8Search in Google Scholar

[52] Szumanski A, 1983. Paleochannels of large meanders in the river valleys of the Polish lowland. Quaternary Studies in Poland 4: 207–216. Search in Google Scholar

[53] Szumanski A, 1986. Postglacjalna ewolucja i mechanism transformacji dna doliny dolnego sanu (Post Glacial evolution and mechanizm of transformation of a floor of the lower San valley). Kwartalnik AGH, Geologia 12(1): 1–92. Search in Google Scholar

[54] Thorndycraft VR and Benito G, 2006. The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. Quaternary Science Reviews 25(3–4): 223–234, DOI 10.1016/j.quascirev.2005.07.003. http://dx.doi.org/10.1016/j.quascirev.2005.07.00310.1016/j.quascirev.2005.07.003Search in Google Scholar

[55] Vandenberghe J, Kasse C, Bohncke SJP and Kozarski S, 1994. Climate-related river activity at the Weichselian-Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova 6: 476–485. http://dx.doi.org/10.1111/j.1365-3121.1994.tb00891.x10.1111/j.1365-3121.1994.tb00891.xSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo