1. bookVolume 40 (2013): Issue 1 (March 2013)
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year
access type Open Access

Meta-analysis of dendrochronological dating of mass movements

Published Online: 27 Dec 2012
Volume & Issue: Volume 40 (2013) - Issue 1 (March 2013)
Page range: 59 - 76
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year

Absolute dating of mass movements is crucial for disentangling possible release factors and determining the frequency of events. Here, we present an overview of a recent approach to dendrochronological dating of rockfalls, flows, landslides and avalanches. The results, based on 69 casestudies, show that methodological approaches to sampling and material processing differ considerably for different types of mass movements. Landslides are usually detected through abrupt growth changes and changes in stem eccentricity, whereas high-energy events as avalanches and flows are mostly identified by the formation of traumatic resin ducts, reaction wood, growth injuries and eccentricity changes. Cross-dating of dead wood is applicable as well. The dating of most mass movements except landslides is common, even with sub-annual resolution. In comparison to other methods of absolute dating, the main benefit of dendrochronology still lies in the high temporal resolution of the results. If living material is accessible, on-going research progress makes absolute dating of most mass-wasting events possible with sub-annual precision.


[1] Alestalo J, 1971. Dendrochronological interpretation of geomorphological processes. Fennia 105: 1–139. Search in Google Scholar

[2] Arbellay E, Stoffel M and Bollschweiler M, 2010. Dendrogeomorphic reconstruction of past debris-flow activity using injured broad-leaved trees. Earth Surface Processes and Landforms 35(4): 399–406, DOI 10.1002/esp.1934. 10.1002/esp.1934Search in Google Scholar

[3] Baumann F and Kaiser KF, 1999. The Multetta Debris Fan, Eastern Swiss Alps: A 500-year Debris Flow Chronology. Arctic, Antarctic and Alpine Research 31(2): 128–134, DOI 10.2307/1552601. http://dx.doi.org/10.2307/155260110.1080/15230430.1999.12003290Search in Google Scholar

[4] Bégin Ch and Filion L, 2010. Age of Landslides Along the Grande Riviére de la Baleine Estuary, Eastern Coast of Hudson Bay, Quebec (Canada). In: Stoffel M, Bollschweiler M, Butler DR and Luckman BH, eds, Tree Rings and Natural Hazards. Advances in Global Change Research 41. Springer, Dordrecht Heidelberg London New York: 107–120. http://dx.doi.org/10.1007/978-90-481-8736-2_1010.1007/978-90-481-8736-2_10Search in Google Scholar

[5] Bodoque JM, Díez-Herrero A, Martín-Duque JF, Rubiales JM, Godfrey A, Pedraza J, Carrasco RM and Sanz MA, 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena 64(1): 81–102, DOI 10.1016/j.catena.2005.08.002. http://dx.doi.org/10.1016/j.catena.2005.08.00210.1016/j.catena.2005.08.002Search in Google Scholar

[6] Bollati I, Della Seta M, Pelfini M, Del Monte M, Fredi P and Lupia Palmieri E, 2012. Dendrochronological and geomorphological investigations to assess water erosion and mass wasting processes in the Apennines of Southern Tuscany (Italy). Catena 90: 1–17, DOI 10.1016/j.catena.2011.11.005. http://dx.doi.org/10.1016/j.catena.2011.11.00510.1016/j.catena.2011.11.005Search in Google Scholar

[7] Bollschweiler M and Stoffel M, 2007. Debris flows on forested cones — reconstruction and comparison of frequencies in two catchments in Val Ferret, Switzerland. Natural Hazards and Earth System Sciences 7(2): 207–218, DOI 10.5194/nhess-7-207-2007. http://dx.doi.org/10.5194/nhess-7-207-200710.5194/nhess-7-207-2007Search in Google Scholar

[8] Bollschweiler M and Stoffel M, 2010. Variations in debris-flow occurence in an Alpine catchment — A reconstuction based on tree rings. Global and Planetary Change 73(3–4): 186–192, DOI 10.1016/j.gloplacha.2010.05.006. http://dx.doi.org/10.1016/j.gloplacha.2010.05.00610.1016/j.gloplacha.2010.05.006Search in Google Scholar

[9] Bollschweiler M, Stoffel M, Ehmisch M and Monbaron M, 2007. Reconstructing spatiotemporal patterns of debris-flow activity using dendrogeomorphological methods. Geomorphology 87(4): 337–351, DOI 10.1016/j.geomorph.2006.10.002. http://dx.doi.org/10.1016/j.geomorph.2006.10.00210.1016/j.geomorph.2006.10.002Search in Google Scholar

[10] Bollschweiler M, Stoffel M and Schneuwly DM, 2008. Dynamics in debris-flow activity on a forested cone — A case study using different dendroecological approaches. Catena 72(1): 67–78, DOI 10.1016/j.catena.2007.04.004. http://dx.doi.org/10.1016/j.catena.2007.04.00410.1016/j.catena.2007.04.004Search in Google Scholar

[11] Bollschweiler M, Stoffel M, Vázquez-Selem L and Palacios D, 2010. Tree-ring reconstruction of past lahar activity at Popocatépetl volcano, México. The Holocene 20(2): 265–274, DOI 10.1177/0959683609350394. http://dx.doi.org/10.1177/095968360935039410.1177/0959683609350394Search in Google Scholar

[12] Bollschweiler M, Stoffel M and Schläppy R, 2011. Debris-flood reconstruction in a prealpine catchment in Switzerland based on treering records of coniferous and broadleaved trees. Geografiska Annaler Series A 93(1): 1–15, DOI 10.1111/j.1468-0459.2011.00001.x. http://dx.doi.org/10.1111/j.1468-0459.2011.00001.x10.1111/j.1468-0459.2011.00001.xSearch in Google Scholar

[13] Braam RR, Weiss EJJ and Burrough PA, 1987. Spatial and temporal analysis of mass movement using dendrochronology. Catena 14(6): 573–584, DOI 10.1016/0341-8162(87)90007-5. http://dx.doi.org/10.1016/0341-8162(87)90007-510.1016/0341-8162(87)90007-5Search in Google Scholar

[14] Butler DR and Malanson GP, 1985. A History of High-Magnitude Snow Avalanches, Southern Glacier National Park, Montana, U.S.A. Mountain Research and Development 5(2): 175–182. http://dx.doi.org/10.2307/367325610.2307/3673256Search in Google Scholar

[15] Butler DR and Sawyer CF, 2008. Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Natural Hazards and Earth System Sciences 8(2): 303–309, DOI 10.5194/nhess-8-303-2008. http://dx.doi.org/10.5194/nhess-8-303-200810.5194/nhess-8-303-2008Search in Google Scholar

[16] Carrara PE and O’Neill JM, 2003. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quaternary Research 59(1): 25–35, DOI 10.1016/S0033-5894(02)00010-8. http://dx.doi.org/10.1016/S0033-5894(02)00010-810.1016/S0033-5894(02)00010-8Search in Google Scholar

[17] Casteller A, Stöckli V, Villalba R and Mayer AC, 2007. An Evaluation of Dendroecological Indicators of Snow Avalanches in the Swiss Alps. Arctic, Antarctic and Alpine Research 39(2): 218–228, DOI 10.1657/1523-0430(2007)39[218:AEODIO]2.0.CO;2. http://dx.doi.org/10.1657/1523-0430(2007)39[218:AEODIO]2.0.CO;2Search in Google Scholar

[18] Casteller A, Villalba R, Araneo D and Stöckli V, 2011. Reconstructing temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes. Cold Regions Science and Technology 67(1–2): 68–78, DOI 10.1016/j.coldregions.2011.02.001. http://dx.doi.org/10.1016/j.coldregions.2011.02.00110.1016/j.coldregions.2011.02.001Search in Google Scholar

[19] Casteller A, Villaba R, Mayer A and Stöckli V, 2009. Reconstrucción espacial y temporal de la ocurrencia de avalanchas de nieve en los Andes patagónicos utilizando técnicas dendrocronológicas. Revista chilena de historia natural 82(2): 245–264. (in Spanish) http://dx.doi.org/10.4067/S0716-078X200900020000710.4067/S0716-078X2009000200007Search in Google Scholar

[20] Cook ER and Kairiukstis LA, 1990. Methods of Dendrochronology. Applications in the Environmental Sciences. Kluwer, Netherlands. 394pp. 10.1007/978-94-015-7879-0Search in Google Scholar

[21] Corominas J and Moya J, 1999. Reconstructing recent landslide activity in relation to rainfall in Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30(1–2): 79–93, DOI 10.1016/S0169-555X(99)00046-X. http://dx.doi.org/10.1016/S0169-555X(99)00046-X10.1016/S0169-555X(99)00046-XSearch in Google Scholar

[22] Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology 124(3–4): 137–149, DOI 10.1016/j.geomorph.2010.09.001. http://dx.doi.org/10.1016/j.geomorph.2010.09.00110.1016/j.geomorph.2010.09.001Search in Google Scholar

[23] Corona Ch, Lopez Saez J, Stoffel M, Bonnefoy M, Richard D, Astrade L and Berger F, 2012. How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Regions Science and Technology 74–75: 31–42, DOI 10.1016/j.coldregions.2012.01.003. http://dx.doi.org/10.1016/j.coldregions.2012.01.00310.1016/j.coldregions.2012.01.003Search in Google Scholar

[24] Corona Ch, Rovéra G, Lopez Saez J, Stoffel M and Parfettini P, 2010. Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83(2–3): 107–118, DOI 10.1016/j.catena.2010.08.004. 10.1016/j.catena.2010.08.004Search in Google Scholar

[25] Decaulne A, Eggertsson Ó and Sæmundsson Þ, 2012. A first dendrogeomorphologic approach of snow avalanche magnitude-frequency in Northern Iceland. Geomorphology 167–168: 35–44, DOI 10.1016/j.geomorph.2011.11.017. http://dx.doi.org/10.1016/j.geomorph.2011.11.01710.1016/j.geomorph.2011.11.017Search in Google Scholar

[26] Decaulne A and Sæmundsson Þ, 2008. Dendrogeomorphology as a tool to unravel snow-avalanche activity: Preliminary results from the Fnjóskadalur test site, Northern Iceland. Norwegian Journal of Geography 62(2): 55–65, DOI 10.1080/00291950802094742. 10.1080/00291950802094742Search in Google Scholar

[27] Dorren LKA and Berger F, 2006. Stem breakage of trees and energy dissipation during rockfall impacts. Tree Physiology 26(1): 63–71, DOI 10.1093/treephys/26.1.63. http://dx.doi.org/10.1093/treephys/26.1.6310.1093/treephys/26.1.63Search in Google Scholar

[28] Dubé S, Filion L and Hétu B, 2004. Tree-Ring Reconstruction of High-Magnitude Snow Avalanches in the Northern Gaspé Peninsula, Québec, Canada. Arctic, Antarctic and Alpine Research 36(4): 555–564, DOI 10.1657/1523-0430(2004)036[0555:TROHSA]2.0.CO;2. http://dx.doi.org/10.1657/1523-0430(2004)036[0555:TROHSA]2.0.CO;2Search in Google Scholar

[29] Duncker P and Spiecker H, 2008. Cross-sectional compression wood distribution and its relation to eccentric radial growth in Picea abies [L.] Karst. Dendrochronologia 26(3): 195–202, DOI 10.1016/j.dendro.2008.06.004. http://dx.doi.org/10.1016/j.dendro.2008.06.00410.1016/j.dendro.2008.06.004Search in Google Scholar

[30] Fantucci R and Sorriso-Valvo M, 1999. Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy). Geomorphology 30(1–2): 165–174, DOI 10.1016/S0169-555X(99)00052-5. http://dx.doi.org/10.1016/S0169-555X(99)00052-510.1016/S0169-555X(99)00052-5Search in Google Scholar

[31] Friedman JM, Vincent KR and Shafroth PB, 2005. Dating floodplain sediments using tree-ring response to burial. Earth Surface Pro-cesses and Landforms 30(9): 1077–1091, DOI 10.1002/esp.1263. http://dx.doi.org/10.1002/esp.126310.1002/esp.1263Search in Google Scholar

[32] Garavaglia V and Pelfini M, 2011. The role of border areas for dendrochronological investigations on catastrophic snow avalanches: A case study from the Italian Alps. Catena 87(2): 209–215, DOI 10.1016/j.catena.2011.06.006. http://dx.doi.org/10.1016/j.catena.2011.06.00610.1016/j.catena.2011.06.006Search in Google Scholar

[33] Gärtner H, 2007a. Glacial landforms, tree rings — Dendrogeomorphology. In: Elias PP, ed, Encyclopedia of Quaternary Science. University of London. 979–988. 10.1016/B0-44-452747-8/00380-XSearch in Google Scholar

[34] Gärtner H, 2007b. Tree roots — Methodological review and new development in dating and quantifying erosive processes. Geomorphology 86(3–4): 243–251, DOI 10.1016/j.geomorph.2006.09.001. http://dx.doi.org/10.1016/j.geomorph.2006.09.00110.1016/j.geomorph.2006.09.001Search in Google Scholar

[35] Gärtner H and Heinrich I, 2009. The Formation of Traumatic Rows of Resin Ducts in Larix decidua and Picea abies (Pinaceae) as a Result of Wounding Experiments in the Dormant Season. IAWA Journal 30(2): 199–215. 10.1163/22941932-90000215Search in Google Scholar

[36] Gärtner H and Nievergelt D, 2010. The coremicrotome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28(2): 85–92, DOI 10.1016/j.dendro.2009.09.002. http://dx.doi.org/10.1016/j.dendro.2009.09.00210.1016/j.dendro.2009.09.002Search in Google Scholar

[37] Germain D, Hétu B and Filion L, 2010. Tree-ring Based Reconstruction of Past Snow Avalanche Events and Risk Assessment in Northern Gaspé Peninsula (Québec, Canada). In: Stoffel M, Bollschweiler M, Butler DR and Luckman BH, eds, Tree Rings and Natural Hazards. Advances in Global Change Research 41. Springer, Dordrecht Heidelberg London New York: 51–73. http://dx.doi.org/10.1007/978-90-481-8736-2_510.1007/978-90-481-8736-2_5Search in Google Scholar

[38] Gers E, Florin N, Gärtner H, Glade T, Dikau R and Schweingruber FH, 2001. Application of shrubs for dendrogeomorphological analysis to reconstruct spatial and temporal landslide movement patterns. A preliminary study. Zeitschrift für Geomorphologie N.F. Suppl. 125: 163–175. Search in Google Scholar

[39] Grau HR, Easdale TA and Paolini L, 2003. Subtropical dendroecology — dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. Forest Ecology and Management 177(1–3): 131–143, DOI 10.1016/S0378-1127(02)00316-X. http://dx.doi.org/10.1016/S0378-1127(02)00316-X10.1016/S0378-1127(02)00316-XSearch in Google Scholar

[40] Grissino-Mayer H, 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57(2): 205–221. Search in Google Scholar

[41] Guida D, Pelfini M and Santilli M, 2008. Geomorphological and dendrochronological analyses of a complex landslide in the southern Apennines. Geografiska Annaler 90A(3): 211–226. http://dx.doi.org/10.1111/j.1468-0459.2008.340.x10.1111/j.1468-0459.2008.340.xSearch in Google Scholar

[42] Hebertson EG and Jenkins MJ, 2003. Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Regions Science and Technology 37(3): 315–332, DOI 10.1016/S0165-232X(03)00073-9. http://dx.doi.org/10.1016/S0165-232X(03)00073-910.1016/S0165-232X(03)00073-9Search in Google Scholar

[43] Heinrich I and Gärtner H, 2008. Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. International Journal of Plant Sciences 169(7): 928–936, DOI 10.1086/589695. http://dx.doi.org/10.1086/58969510.1086/589695Search in Google Scholar

[44] Hitz OM, Gärtner H, Heinrich I and Monbaron M, 2008. Wood anatomical changes in roots of European ash (Fraxinus excelsior L.) after exposure. Dendrochronologia 25(3): 145–152, DOI 10.1016/j.dendro.2007.03.005. http://dx.doi.org/10.1016/j.dendro.2007.03.00510.1016/j.dendro.2007.03.005Search in Google Scholar

[45] Hupp CR, 1984. Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California. Environmental Geology 6(2): 121–128, DOI 10.1007/BF02509918. 10.1007/BF02509918Search in Google Scholar

[46] Kaczka RJ, Deslauriers A and Morin H, 2010. High-Precision Dating of Debris-Flow Events Within Growing Season. In: Stoffel M, Bollschweiler M, Butler DR and Luckman BH, eds, Tree Rings and Natural Hazards. Advances in Global Change Research 41. Springer, Dordrecht Heidelberg London New York: 227–229. http://dx.doi.org/10.1007/978-90-481-8736-2_2110.1007/978-90-481-8736-2_21Search in Google Scholar

[47] Kent M, Owen NW, Dale P, Newnham RM and Giles TM, 2001. Studies of vegetation burial: a focus for biogeography and biogeomorphology? Progress in Physical Geography 25(4): 455–482. DOI 10.1177/030913330102500401. 10.1177/030913330102500401Search in Google Scholar

[48] Kogelnik-Mayer B, Stoffel M, Schneuwly-Bollschweiler M, Hübl J and Rudolf-Mikau F, 2011. Possibilities and Limitations of Dendrogeomorphic Time-Series Reconstructions on Sites Influenced by Debris Flows and Frequent Snow Avalanche Activity. Arctic, Antarctic and Alpine Research 43(4): 649–658, DOI 10.1657/1938-4246-43.4.659. http://dx.doi.org/10.1657/1938-4246-43.4.64910.1657/1938-4246-43.4.649Search in Google Scholar

[49] Köse N, Aydin A, Akkemik Ü, Yurtseven H and Güner T, 2010. Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey. Natural Hazards 54(2): 435–449, DOI 10.1007/s11069-009-9477-x. http://dx.doi.org/10.1007/s11069-009-9477-x10.1007/s11069-009-9477-xSearch in Google Scholar

[50] Kukal Z and Pošmourný K, 2005. Přírodní katastrofy a rizika. Ministerstvo životního prostředí České republiky. Praha. 51 pp. (in Czech) Search in Google Scholar

[51] Lang A, Moya J, Corominas J, Schrott L and Dikau R, 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30(1–2): 33–52, DOI 10.1016/S0169-555X(99)00043-4. http://dx.doi.org/10.1016/S0169-555X(99)00043-410.1016/S0169-555X(99)00043-4Search in Google Scholar

[52] Laxton SC and Smith DJ, 2009. Dendrochronological reconstruction of snow avalanche activity in the Lahul Himalaya, Northern India. Natural Hazards 49(3): 459–467, DOI 10.1007/s11069-008-9288-5. http://dx.doi.org/10.1007/s11069-008-9288-510.1007/s11069-008-9288-5Search in Google Scholar

[53] Lepš J and Šmilauer P, 2003. Multivariate analysis of ecological data using CANOCO. CUP, Cambridge, 292 pp. http://dx.doi.org/10.1017/CBO978051161514610.1017/CBO9780511615146Search in Google Scholar

[54] Lopez Saez J, Corona Ch, Stoffel M, Astrade L, Berger F and Malet J-P, 2012a. Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the Bois Noir landslide, southeast French Alps. Landslides 9(2): 189–203, DOI 10.1007/s10346-011-0284-6. http://dx.doi.org/10.1007/s10346-011-0284-610.1007/s10346-011-0284-6Search in Google Scholar

[55] Lopez Saez J, Corona Ch, Stoffel M and Berger F, 2012b. High-resolution fingerprints of past landsliding and spatially explicit, probabilistic assessment of future reactivations: Aiguettes landslide, Southeastern French Alps. Tectonophysics in press. DOI: 10.1016/j.tecto.2012.04.020. 10.1016/j.tecto.2012.04.020Search in Google Scholar

[56] Lopez Saez J, Corona Ch, Stoffel M, Scoeneich P and Berger F, 2012c. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, DOI 10.1016/j.geomorph.2011.08.034. http://dx.doi.org/10.1016/j.geomorph.2011.08.03410.1016/j.geomorph.2011.08.034Search in Google Scholar

[57] Malik I and Matyja M, 2008. Bank erosion history of a mountain stream determined by means of anatomical changes in exposed tree roots over last 100 years (Bílá Opava River — Czech republic). Geomorphology 98(1–2): 126–142, DOI 10.1016/j.geomorph.2007.02.030. http://dx.doi.org/10.1016/j.geomorph.2007.02.03010.1016/j.geomorph.2007.02.030Search in Google Scholar

[58] Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes — Central Europe). Geochronometria 34: 57–66, DOI 10.2478/v10003-009-0011-7. http://dx.doi.org/10.2478/v10003-009-0011-710.2478/v10003-009-0011-7Search in Google Scholar

[59] May ChL and Gresswell RE, 2004. Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA. Geomorphology 57(3–4): 135–149, DOI 10.1016/S0169-555X (03)00086-2. http://dx.doi.org/10.1016/S0169-555X(03)00086-210.1016/S0169-555X(03)00086-2Search in Google Scholar

[60] Mayer B, Stoffel M, Bollschweiler M, Hübl J and Rudolf-Miklau F, 2010. Frequency and spread of debris floods on fans: A dendrogeomorphic case study from a dolomite catchment in the Austrian Alps. Geomorphology 118(1–2): 199–206, DOI 10.1016/j.geomorph.2009.12.019. http://dx.doi.org/10.1016/j.geomorph.2009.12.01910.1016/j.geomorph.2009.12.019Search in Google Scholar

[61] Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Šilhán K., 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124(3–4): 200–214, DOI 10.1016/j.geomorph.2010.09.024. http://dx.doi.org/10.1016/j.geomorph.2010.09.02410.1016/j.geomorph.2010.09.024Search in Google Scholar

[62] Moya J, Corominas J, Pérez Arcas J and Baeza C, 2010. Tree-ring based assessment of rockfall frequency on talus slopes at Solàd’Andorra, Eastern Pyrenees. Geomorphology 118(3–4): 393–408, DOI 10.1016/j.geomorph.2010.02.007. http://dx.doi.org/10.1016/j.geomorph.2010.02.00710.1016/j.geomorph.2010.02.007Search in Google Scholar

[63] Mundo IA, Barrera MD and Roig FA, 2007. Testing the utility of Nothofagus pumilio for dating a snow avalanche in Tierra del Fuego, Argentina. Dendrochronologia 25(1): 19–28, DOI 10.1016/j.dendro.2007.01.001. http://dx.doi.org/10.1016/j.dendro.2007.01.00110.1016/j.dendro.2007.01.001Search in Google Scholar

[64] Muntán E, García C, Oller P, Martí G, García A and Gutiérrez E, 2009. Reconstructing snow avalanches in the Southeastern Pyrennes. Natural Hazards and Earth System Science 9(5): 1599–1612, DOI 10.5194/nhess-9-1599-2009. http://dx.doi.org/10.5194/nhess-9-1599-200910.5194/nhess-9-1599-2009Search in Google Scholar

[65] Owczarek P, 2010. Dendrochronological dating of geomorphic processes in the High Arctic. Landform Analysis. 14: 45–56. Search in Google Scholar

[66] Pallardy SG and Kozlowski TT, 2008. Physiology of woody plants. 3th edition. Academic Press — Elsevier. Oxford, 454 pp. Search in Google Scholar

[67] Paolini L, Villalba R and Ricardo Grau H, 2005. Precipitation variability and landslide occurrence in a subtropical ecosystem of NW Argentina. Dendrochronologia 22(3): 175–180, DOI 10.1016/j.dendro.2005.06.001. http://dx.doi.org/10.1016/j.dendro.2005.06.00110.1016/j.dendro.2005.06.001Search in Google Scholar

[68] Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps — A dendorgeomorphological case study. Geomorphology 74(1–4): 219–231, DOI 10.1016/j.geomorph.2005.08.009. http://dx.doi.org/10.1016/j.geomorph.2005.08.00910.1016/j.geomorph.2005.08.009Search in Google Scholar

[69] Procter E, Bollschweiler M, Stoffel M and Neumann M, 2011. A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria. Geomorphology 132(1–2): 41–50, DOI 10.1016/j.geomorph.2011.04.035. http://dx.doi.org/10.1016/j.geomorph.2011.04.03510.1016/j.geomorph.2011.04.035Search in Google Scholar

[70] Reardon BA, Pederson GT, Caruso CJ and Fagre DB, 2008. Spatial Reconstructions and Comparisons of Historic Snow Avalanche Frequency and Extent Using Tree Rings in Glacier National Park, Montana, U.S.A. Arctic, Antarctic and Alpine Research 40(1): 148–160, DOI 10.1657/1523-0430(06-069)[REARDON]2.0.CO;2. http://dx.doi.org/10.1657/1523-0430(06-069)[REARDON]2.0.CO;2Search in Google Scholar

[71] Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R and Borghetti M, 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170(2): 301–310, DOI 10.1111/j.1469-8137.2006.01660.x. http://dx.doi.org/10.1111/j.1469-8137.2006.01660.x10.1111/j.1469-8137.2006.01660.xSearch in Google Scholar

[72] Santilli M and Pelfini M, 2002. Dendrogeomorphology and dating of debris flows in the Valle del Gallo, Central Alps, Italy. Dendrochronologia 20(3): 269–284, DOI 10.1078/1125-7865-00020. http://dx.doi.org/10.1078/1125-7865-0002010.1078/1125-7865-00020Search in Google Scholar

[73] Pelfini M and Santilli M, 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101(4): 721–730, DOI 10.1016/j.geomorph.2008.04.002. http://dx.doi.org/10.1016/j.geomorph.2008.04.00210.1016/j.geomorph.2008.04.002Search in Google Scholar

[74] Shroder JF, 1978. Dendrogeomorphological Analysis of Mass Movement on Table Cliffs Plateau, Utah. QuaternaryResearch 9(2): 168–185, DOI 10.1016/0033-5894(78)90065-0. 10.1016/0033-5894(78)90065-0Search in Google Scholar

[75] Schneuwly DM and Stoffel M, 2008a. Spatial analysis of rockfall activity, bounce heights and geomorphic changes over the last 50 years — A case study using dendrogeomorphology. Geomorphology 102(3–4): 522–531, DOI 10.1016/j.geomorph.2008.05.043. http://dx.doi.org/10.1016/j.geomorph.2008.05.04310.1016/j.geomorph.2008.05.043Search in Google Scholar

[76] Schneuwly DM and Stoffel M, 2008b. Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Natural Hazards Earth System Sciences 8(2): 203–211, DOI 10.5194/nhess-8-203-2008. http://dx.doi.org/10.5194/nhess-8-203-200810.5194/nhess-8-203-2008Search in Google Scholar

[77] Schneuwly DM, Stoffel M and Bollschweiller M, 2009. Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiology 29(2): 281–289, DOI 10.1093/treephys/tpn026. http://dx.doi.org/10.1093/treephys/tpn02610.1093/treephys/tpn02619203953Search in Google Scholar

[78] Schweingruber FH, 1996. Tree rings and Enviroment. Dendroecology. Biermersdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Berne, Stuttgart, Vienna, Haupt, 609 pp. Search in Google Scholar

[79] Schweingruber FH, 2007. Wood Structure and Environment. Springer. Verlag Berlin Heidelberg New York, 279 pp. Search in Google Scholar

[80] Sorg A, Bugmann H, Bollschweiler M and Stoffel M, 2010. Debris-flow activity along a torrent in the Swiss Alps: Minimum frequency of events and implications for forest dynamics. Dendrochronologia 28(4): 215–223, DOI 10.1016/j.dendro.2009.11.002. http://dx.doi.org/10.1016/j.dendro.2009.11.00210.1016/j.dendro.2009.11.002Search in Google Scholar

[81] Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63(3–4): 191–202, DOI 10.1016/j.geomorph.2004.04.003. http://dx.doi.org/10.1016/j.geomorph.2004.04.00310.1016/j.geomorph.2004.04.003Search in Google Scholar

[82] Stoffel M, 2008. Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 26(1): 53–60, DOI 10.1016/j.dendro.2007.06.002. http://dx.doi.org/10.1016/j.dendro.2007.06.00210.1016/j.dendro.2007.06.002Search in Google Scholar

[83] Stoffel M and Bollschweiler M, 2008. Tree-ring analysis in natural hazards research — an overview. Natural Hazards and Earth System Sciences 8(2): 187–202, DOI 10.5194/nhess-8-187-2008. http://dx.doi.org/10.5194/nhess-8-187-200810.5194/nhess-8-187-2008Search in Google Scholar

[84] Stoffel M and Bollschweiler M, 2009a. What Tree Rings Can Tell About Earth-Surface Processes: Teaching the Principles of Dendrogeomorphology. Geography Compass 3(3): 1013–1037, DOI 10.1111/j.1749-8198.2009.00223.x. http://dx.doi.org/10.1111/j.1749-8198.2009.00223.x10.1111/j.1749-8198.2009.00223.xSearch in Google Scholar

[85] Stoffel M and Bollschweiler M, 2009b. Tree-ring reconstruction of past debris flows based on a small number of samples — possibilities and limitations. Landslides 6(3): 225–230, DOI 10.1007/s10346-009-0165-4. http://dx.doi.org/10.1007/s10346-009-0165-410.1007/s10346-009-0165-4Search in Google Scholar

[86] Stoffel M, Bollschweiler M and Hasler G, 2006. Differentiating past events on a cone influenced by debris-flow and snow avalanche activity — a dendrogeomorphological approach. Earth Surface Processes and Landforms 31(11): 1424–1437, DOI 10.1002/esp.1363. http://dx.doi.org/10.1002/esp.136310.1002/esp.1363Search in Google Scholar

[87] Stoffel M, Bollschweiler M, Vázquez-Selem L, Franco-Ramos O and Palacios D, 2011. Dendrogeomorphic dating of rockfalls on low — latitude, high-elevation slopes: Rodadero, Iztaccíhuatl volcano, Mexico. Earth Surface Processes and Landforms 36(9): 1209–1217, DOI 10.1002/esp.2146. http://dx.doi.org/10.1002/esp.214610.1002/esp.2146Search in Google Scholar

[88] Stoffel M and Hitz OM, 2008. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. Tree Physiology 28: 1713–1720, DOI 10.1093/treephys/28.8.1713. 10.1093/treephys/28.8.1713Search in Google Scholar

[89] Stoffel M and Perret S, 2006. Reconstructing past rockfall activity with tree rings: Some methodological considerations. Dendrochronologia 24(1): 1–15, DOI 10.1016/j.dendro.2006.04.001. http://dx.doi.org/10.1016/j.dendro.2006.04.00110.1016/j.dendro.2006.04.001Search in Google Scholar

[90] Stoffel M, Lièvre I, Conus D, Grichting MA, Raetzo H, Gärtner HW and Monbaron M, 2005a. 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland. Arctic, Antarctic, and Alpine Research. 37(3): 387–395, DOI 10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2. http://dx.doi.org/10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2Search in Google Scholar

[91] Stoffel M, Schneuwly D, Bollschweiler M, Liévre I, Delaloye R, Myint M and Monbaron M, 2005b. Analyzing rockfall activity (1600–2002) in a protection forest — a case study using dendrogeomorphology. Geomorphology 68(3–4): 224–241, DOI 10.1016/j.geomorph.2004.11.017. http://dx.doi.org/10.1016/j.geomorph.2004.11.01710.1016/j.geomorph.2004.11.017Search in Google Scholar

[92] Stoffel M, Liévre I, Monbaron M and Perret S, 2005c. Seasonal timing of rockfall activity on a forested slope at Täschgufer (Swiss Alps) — a dendrochronological approach. Zeitschrift für Geomorphologie N.F. 49(1): 89–106. Search in Google Scholar

[93] Strunk H, 1997. Dating of geomorphological processes using dendrogeomorphological methods. CATENA 31(1–2): 137–151, DOI 10.1016/S0341-8162(97)00031-3. http://dx.doi.org/10.1016/S0341-8162(97)00031-310.1016/S0341-8162(97)00031-3Search in Google Scholar

[94] Szymczak S, Bollschweiler M, Stoffel M and Dikau R, 2010. Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland). Dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116(1–2): 107–114, DOI 10.1016/j.geomorph.2009.10.012. 10.1016/j.geomorph.2009.10.012Search in Google Scholar

[95] Šilhán K, 2010a. Dendrogeomorphology of spatiotemporal activity of rockfall in the Flysch Carpathians: a case study on the western slope of Mt. Smrk (Moravskoslezské Beskydy Mts, Czech republic). Moravian Geographical Reports 18: 33–42. Search in Google Scholar

[96] Šilhán K, 2010b. Dendrochronologické datování blokovobahenních proudů (příkladová studie Slavíč; Moravskoslezské Beskydy). In: Geologické výzkumy na Moravě a ve Slezsku v roce 2010. Brno. 92–95.(in Czech) Search in Google Scholar

[97] Šilhán K, 2011. Prostorové aspekty aktivity skalního řícení (dendrogeomorfologická studie v Moravskoslezských Beskydech). Zprávy o geologických výzkumech v roce 2010. 83–86. (in Czech) Search in Google Scholar

[98] Šilhán K and Pánek T, 2008. Historická chronologie blokovobahenních proudů v Moravskoslezských Beskydech. Geomorphologia Slovaca et Bohemica. 8(1): 82–94. (in Czech) Search in Google Scholar

[99] Ter Braak CJF and Šmilauer P, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Centre for Biometry, Wageningen, 112 pp. Search in Google Scholar

[100] Vandekerckhove L, Muys B, Poesen J, De Weerdt B and Coppé N, 2001. A method for dendrochronological assessment of medium-term gully erosion rates. CATENA 45(2): 123–161, DOI 10.1016/S0341-8162(01)00142-4. http://dx.doi.org/10.1016/S0341-8162(01)00142-410.1016/S0341-8162(01)00142-4Search in Google Scholar

[101] Van der Burght L, Stoffel M and Bigler Ch, 2012. Analysis and modelling of tree succession on a recent rockslide deposit. Plant Ecology 213(1): 35–46, DOI 10.1007/s11258-011-0004-2. http://dx.doi.org/10.1007/s11258-011-0004-210.1007/s11258-011-0004-2Search in Google Scholar

[102] Van Den Eeckhaut M, Muys B, Van Loy K and Beeckman H, 2009. Evidence for repated reactivation of old landslide under forest. Earth Surface Processes and Landforms 34(3): 352–365, DOI 10.1002/esp.1727. http://dx.doi.org/10.1002/esp.172710.1002/esp.1727Search in Google Scholar

[103] Varnes DJ, 1978. Slope movement types and processes. In: Schuster RL and Krizek RJ, eds, Landslides, analysis and control. Transportation Research Board Sp. Rep. No. 176, Nat. Acad. of Sciences, 11–33. Search in Google Scholar

[104] Voiculescu M and Ardelean F, 2012. Snow avalanche — disturbance of high mountain environment. Case study — the Doamney glacial valley, the Făgăraş massif — Southern Carpathians, Romanian Carpathians. Carpathian Journal of Earth and Environmental Sciences 7(1): 95–108. Search in Google Scholar

[105] Wieczorek GF, Scott Eaton L, Yanosky TM, Turner EJ, 2006. Hurricane-induced landslide activity on an alluvial fan along Meadow Run, Shenandoah Valley, Virginia (eastern USA). Landslides 3(2): 95–106, DOI 10.1007/s10346-005-0029-5. http://dx.doi.org/10.1007/s10346-005-0029-510.1007/s10346-005-0029-5Search in Google Scholar

[106] Wilkerson FD and Schmid GL, 2003. Debris flows in Glacier National Park, Montana: geomorphology and hazards. Geomorphology 55(1–4): 317–328, DOI 10.1016/S0169-555X(03)00147-8. http://dx.doi.org/10.1016/S0169-555X(03)00147-810.1016/S0169-555X(03)00147-8Search in Google Scholar

[107] Yoshida K, Kikuchi S, Nakamura F and Noda M, 1997. Dendrochronological analysis of debris flow disturbance on Rishiri Island. Geomorphology 20(1–2): 135–145, DOI 10.1016/S0169-555X(97)00010-X. http://dx.doi.org/10.1016/S0169-555X(97)00010-X10.1016/S0169-555X(97)00010-XSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo