1. bookVolume 39 (2012): Issue 2 (June 2012)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods

Published Online: 17 Mar 2012
Volume & Issue: Volume 39 (2012) - Issue 2 (June 2012)
Page range: 122 - 132
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

High-gradient streams are localities with the most dynamic activity of geomorphological processes in medium-high mountains. This study of the frequency of floods and debris flows in a selected high-gradient stream in the Moravskoslezské Beskydy Mts was based on a dendrogeomorphic approach. It makes use of the most accurate methods applied in the dating of historic geomorphological processes. Individual events were reconstructed on the basis of the dating of various growth disturbances displayed in 99 samples taken from 56 predominantly broad-leaved trees.

As for the studied area, 26 years out of the last 113 years have been identified as years of rapid geomorphological processes. The frequency of the processes has been high above average since the 1970s. A majority of the events can be considered as flash floods. Debris flows, which can only be observed sporadically, originate due to the reactivation of old accumulation material that subsequently ends up re-accumulated on the alluvial fan at the mouth of a stream. A large number of events occur in connection with extreme short-term precipitation in summer months. In addition, they are affected by fast snow melting in spring, which has also been proved by intra-seasonal dating of selected events.

Keywords

[1] Alestalo J, 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1–139. Search in Google Scholar

[2] Bollschweiler M, Stoffel M and Schneuwly DM, 2008. Dynamics in debris-flow activity on a forested cone — A case study using different dendroecological approaches. Catena 72: 67–78, DOI 10.1016/j.catena.2007.04.004. http://dx.doi.org/10.1016/j.catena.2007.04.00410.1016/j.catena.2007.04.004Search in Google Scholar

[3] Bollschweiler M and Stoffel M, 2010a. Tree rings and debris flows: recent developments, future directions. Progress in Physical Geography 34: 625–645, DOI 10.1177/0309133310370283. http://dx.doi.org/10.1177/030913331037028310.1177/0309133310370283Search in Google Scholar

[4] Bollschweiler M and Stoffel M, 2010b. Variations in debris-flow occurrence in an Alpine catchment — A reconstruction based on tree rings. Global and Planetary Change 73: 186–192, DOI 10.1016/j.gloplacha.2010.05.006. http://dx.doi.org/10.1016/j.gloplacha.2010.05.00610.1016/j.gloplacha.2010.05.006Search in Google Scholar

[5] Bollschweiler M, Stoffel M and Schläppy R, 2011. Debris-flood reconstruction in a pre-alpine catchment in Switzerland based on tree-ring records of coniferous and broadleaved trees. Geografiska Annaler A 93: 1–15, DOI 10.1111/j.1468-0459.2011.00001.x. http://dx.doi.org/10.1111/j.1468-0459.2011.00001.x10.1111/j.1468-0459.2011.00001.xSearch in Google Scholar

[6] Brázdil R, Březina L, Dobrovolný P. Dobrovský M, Halásová O, Hostýnek J, Chromá K, Janderková J, Kaláb Z, Keprtová K, Kirchner K, Kotyza O, Krejčí O, Kunc J, Lacina J, Lepka Z, Létal A, Macková J, Máčka Z, Mulíček O, Roštínský P, Řehánek T, Seidenglanz D, Semerádová D, Sokol Z, Soukalová E, Štekl J, Trnka M, Valášek H, Věžník A, Voženílek V and Žalud Z, 2007. Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku (Selected natural extremes and their impacts in Moravia and Silesia). Brno, Praha, Ostrava, Masarykova universita, Český hydrometeorologický ústav, Ústav geoniky Akademie věd ČR: 432pp (in Czech). Search in Google Scholar

[7] Gottesfeld AS and Johnson-Gottesfeld LM, 1990. Floodplain dynamics of a wandering river, dendrochronology of the Morice River, British Columbia, Canada. Geomorphology 3: 159–179, DOI 10.1016/0169-555X(90)90043-P. http://dx.doi.org/10.1016/0169-555X(90)90043-P10.1016/0169-555X(90)90043-PSearch in Google Scholar

[8] Hrádek M and Malik I, 2007. Dendrochronological records of the floodplain morphology transformation of Desná river Halley in the last 150 years, The Hrubý Jeseník Mts. (Czech republic). Moravian Geographical reports 15: 2–15. Search in Google Scholar

[9] Hupp CR and Bazemore DE, 1993. Temporal and spatial patterns of wetland sedimentation, West Tennessee. Journal of Hydrology 141: 179–196, DOI 10.1016/0022-1694(93)90049-F. http://dx.doi.org/10.1016/0022-1694(93)90049-F10.1016/0022-1694(93)90049-FSearch in Google Scholar

[10] Larsen IJ, Pederson JL and Schmidt JC, 2006. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology 81: 114–127, DOI 10.1016/j.geomorph.2006.04.002. http://dx.doi.org/10.1016/j.geomorph.2006.04.00210.1016/j.geomorph.2006.04.002Search in Google Scholar

[11] Lehotský M, Novotný J, Szmańda JB and Fresková A, 2010. A suburban inter-dike river reach of a large river: Modern morphological and sedimentary changes (the Bratislava reach of the Danube River, Slovakia). Geomorphology 117: 298–308, DOI 10.1016/j.geomorph.2009.01.018. http://dx.doi.org/10.1016/j.geomorph.2009.01.01810.1016/j.geomorph.2009.01.018Search in Google Scholar

[12] Malik I, 2006. Gully erosion dating means of anatomical changes in exposed roots (Proboszczowicka plateau, southern Poland). Geochronometria 25: 57–66. Search in Google Scholar

[13] Malik I and Owczarek P, 2009. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (eastern Sudetes — central Europe). Geochronometria 34: 57–66, DOI 10.2478/v10003-009-0011-7. http://dx.doi.org/10.2478/v10003-009-0011-710.2478/v10003-009-0011-7Search in Google Scholar

[14] Mayer B, Stoffel M, Bollschweiler M, Hübl J and Rudolf-Miklau F, 2010. Frequency and spread of debris floods on fans: A dendrogeomorphic case study from a dolomite catchment in the Austrian Alps. Geomorphology 118: 199–206, DOI 10.1016/j.geomorph.2009.12.019. http://dx.doi.org/10.1016/j.geomorph.2009.12.01910.1016/j.geomorph.2009.12.019Search in Google Scholar

[15] Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J and Vašíček Z, 1983. Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny (Geology of the Moravskoslezské Beskydy Mts and the Podbeskydská upland). Praha, Ústřední ústav geologický: 304pp (in Czech). Search in Google Scholar

[16] Pánek T, Hradecký J, Minár J, Hungr O and Dušek R, 2009. Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic. Geomorphology 103: 414–429, DOI 19.1016/j.geomorph.2008.07.012. http://dx.doi.org/10.1016/j.geomorph.2008.07.01210.1016/j.geomorph.2008.07.012Search in Google Scholar

[17] Pelfini M and Santilli M, 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101: 721–730, DOI 10.1016/j.geomorph.2008.04.002. http://dx.doi.org/10.1016/j.geomorph.2008.04.00210.1016/j.geomorph.2008.04.002Search in Google Scholar

[18] Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps — A dendrogeomorphological case study. Geomorphology 74: 219–231, DOI: 10.1016/j.geomorph.2005.08.009. http://dx.doi.org/10.1016/j.geomorph.2005.08.00910.1016/j.geomorph.2005.08.009Search in Google Scholar

[19] Ruiz-Villanueva V, Díez-Herrero A, Stoffel M, Bollschweiler M, Bodoque JM and Ballesteros JA, 2010. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology 118: 383–392, DOI10.1016/j.geomorph.2010.02.006. http://dx.doi.org/10.1016/j.geomorph.2010.02.00610.1016/j.geomorph.2010.02.006Search in Google Scholar

[20] Shroder JF, 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9: 168–185, DOI 10.1016/0033-5894(78)90065-0. http://dx.doi.org/10.1016/0033-5894(78)90065-010.1016/0033-5894(78)90065-0Search in Google Scholar

[21] Schneuwly DM and Stoffel M, 2008. Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps. Natural Hazards and Earth System Sciences 8: 203–211. http://dx.doi.org/10.5194/nhess-8-203-200810.5194/nhess-8-203-2008Search in Google Scholar

[22] Schweingruber FH, Eckstein D, Serre-Bachet F and Braker OU, 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38. Search in Google Scholar

[23] Schweingruber FH, 1996. Tree rings and environment, dendroecology. Wien, Haupt Verlag: 609pp. Search in Google Scholar

[24] Stoffel M and Bollschweiler M, 2008. Tree-ring analysis in natural hazards research — an overview. Natural hazards and earth system sciences 8: 187–202. http://dx.doi.org/10.5194/nhess-8-187-200810.5194/nhess-8-187-2008Search in Google Scholar

[25] Šilhán K and Pánek T, 2010. Fossil and recent debris flows in medium-high mountains (Moravskoslezské Beskydy Mts, Czech Republic). Geomorphology 124: 238–249, DOI 10.1016/j.geomorph.2010.03.026. http://dx.doi.org/10.1016/j.geomorph.2010.03.02610.1016/j.geomorph.2010.03.026Search in Google Scholar

[26] Šilhán K, Brázdil R, Pánek T, Dobrovolný P, Kašičková L, Tolasz R, Turský O and Václavek M, 2011. Evaluation of meteorological controls of reconstructed rockfall activity in the Czech Flysch Carpathians. Earth Surface Processes and Landforms 36: 1898–1909, DOI 10.1002/esp.2211. http://dx.doi.org/10.1002/esp.221110.1002/esp.2211Search in Google Scholar

[27] Van Den Eeckhaut M, Muys B, Van Loy K, Poesen J and Beeckman H, 2009. Evidence for repeated re-activation of old landslides under forest. Earth Surface Processes and Landforms 34: 352–365, DOI 10.1002/esp.1727. http://dx.doi.org/10.1002/esp.172710.1002/esp.1727Search in Google Scholar

[28] V.I.A.S., 2005. Vienna Institute of Archaeological Science, Time Table. Installation and instruction manual. Ver. 2.1, Vienna Search in Google Scholar

[29] Zielonka T, Holeksa J and Ciapała S, 2008. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia 26: 173–183, DOI 10.1016/j.dendro.2008.06.003. http://dx.doi.org/10.1016/j.dendro.2008.06.00310.1016/j.dendro.2008.06.003Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo