1. bookVolume 39 (2012): Issue 1 (March 2012)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Proposing new approaches for dating young volcanic eruptions by luminescence methods

Published Online: 25 Dec 2011
Volume & Issue: Volume 39 (2012) - Issue 1 (March 2012)
Page range: 48 - 56
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

The application of luminescence dating to young volcanic sediments has been first investigated over three decades ago, but it was only with the technical innovations of the last decade that such analyses became viable. While current analytical procedures show promise for dating late Quaternary volcanic events, most efforts have been aimed at unconsolidated volcanic tephra. Investigations into direct dating of lava flows or of non-heated volcanoclastics like phreatic explosion layers, however, remain scarce. These volcanic deposits are of common occurrence and represent important chrono- and volcanostratigraphic markers. Their age determination is therefore of great importance in volcanologic, tectonic, geomorphological and climate studies. In this article, we propose the use of phreatic explosion deposits and xenolithic inclusions in lava flows as target materials for luminescence dating applications. The main focus is on the crucial criterion whether it is probable that such materials experience complete luminescence signal resetting during the volcanic event to be dated. This is argued based on the findings from existing literature, model calculations and laboratory tests.

Keywords

[1] Banerjee D, Singhvi AK, Pande K, Gogte VD and Chandra BP, 1999. Towards a direct dating of fault gouges using luminescence dating techniques — Methodological aspects. Current Science 77(2): 256–268. Search in Google Scholar

[2] Bassinet C, Mercier N, Miallier D, Pilleyre T, Sanzelle S and Valladas H, 2006. Thermoluminescence of heated quartz grains: Intercomparisons between SAR and multiple-aliquot additive dose techniques. Radiation Measurements 41(7–8): 803–808, DOI 10.1016/j.radmeas.2006.04.013. http://dx.doi.org/10.1016/j.radmeas.2006.04.01310.1016/j.radmeas.2006.04.013Search in Google Scholar

[3] Berger GW, 1991. The use of glass for dating volcanic ash by thermoluminescence. Journal of Geophysical Research-Solid Earth 96(B12): 19705–19720, DOI 10.1029/91JB01899. http://dx.doi.org/10.1029/91JB0189910.1029/91JB01899Search in Google Scholar

[4] Berger GW and Huntley DJ, 1994. Tests for optically stimulated luminescence from tephra glass. Quaternary Science Reviews 13(5–7): 509–511, DOI 10.1016/0277-3791(94)90067-1. http://dx.doi.org/10.1016/0277-3791(94)90067-110.1016/0277-3791(94)90067-1Search in Google Scholar

[5] Cannon J, 1984. The one-dimensional heat equation. Addison-Wesley, Menlo Park: 483pp. http://dx.doi.org/10.1017/CBO978113908696710.1017/CBO9781139086967Search in Google Scholar

[6] Chandra U and Lokanathan S, 1982. A Mössbauer study of the effect of heat-treatment on biotite micas. Journal of Physics D — Applied Physics 15(11): 2331–2340. http://dx.doi.org/10.1088/0022-3727/15/11/02510.1088/0022-3727/15/11/025Search in Google Scholar

[7] Cho WJ, Kwon S and Choi JW, 2009. The thermal conductivity for granite with various water contents. Engineering Geology 107(3–4): 167–171, DOI 10.1016/j.enggeo.2009.05.012. http://dx.doi.org/10.1016/j.enggeo.2009.05.01210.1016/j.enggeo.2009.05.012Search in Google Scholar

[8] Fattahi M and Stokes S, 2000a. Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiation Measurements 32(5–6): 479–485, DOI 10.1016/S1350-4487(00)00105-0. http://dx.doi.org/10.1016/S1350-4487(00)00105-010.1016/S1350-4487(00)00105-0Search in Google Scholar

[9] Fattahi M and Stokes S, 2000b. Red thermoluminescence (RTL) in volcanic quartz: development of a high sensitive detection system and some preliminary findings. Ancient TL 18(2): 35–44. Search in Google Scholar

[10] Fattahi M and Stokes S, 2003a. Dating volcanic and related sediments by luminescence methods: a review. Earth-Science Reviews 62(3—4): 229–264, DOI 10.1016/S0012-8252(02)00159-9. http://dx.doi.org/10.1016/S0012-8252(02)00159-910.1016/S0012-8252(02)00159-9Search in Google Scholar

[11] Fattahi M and Stokes S, 2003b. Photomultiplier and filter combinations for the detection of relatively long wavelength (> 600 nm) luminescence emissions from feldspar. Ancient TL 21(1): 25–34. Search in Google Scholar

[12] Faure G, 1986. Principles of isotope geology, 2nd edition. John Wiley and Sons, New York: 589pp. Search in Google Scholar

[13] Feng W and Ma H, 2004. Thermodynamic analysis and experiments of thermal decomposition for potassium feldspar at intermediate temperatures. Journal of the Chinese Ceramic Society 32(7): 789–799. Search in Google Scholar

[14] Fischer RV and Schmincke HU, 1984. Pyroclastic rocks. Springer Verlag, Berlin: 472pp. http://dx.doi.org/10.1007/978-3-642-74864-610.1007/978-3-642-74864-6Search in Google Scholar

[15] Flynn LP and Mouginis-Mark PJ, 1992. Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophysical Research Letters 19(17): 1783–1786, DOI 10.1029/92GL01577. http://dx.doi.org/10.1029/92GL0157710.1029/92GL01577Search in Google Scholar

[16] Ganzawa Y, Furukawa H, Hashimoto T, Sanzelle S, Miallier D and Pilleyre T, 2005. Single grains dating of volcanic quartz from pyroclastic flows using red TL. Radiation Measurements 39(5): 479–487, DOI 10.1016/j.radmeas.2004.10.012. http://dx.doi.org/10.1016/j.radmeas.2004.10.01210.1016/j.radmeas.2004.10.012Search in Google Scholar

[17] Gottsmann J and Dingwell DB, 2002. The thermal history of a spatterfed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bulletin of Volcanology 64(6): 410–422, DOI 10.1007/s00445-002-0220-7. http://dx.doi.org/10.1007/s00445-002-0220-710.1007/s00445-002-0220-7Search in Google Scholar

[18] Guerin G and Valladas G, 1980. Thermo-luminescence dating of volcanic plagioclases. Nature 286(5774): 697–699, DOI 10.1038/286697a0. http://dx.doi.org/10.1038/286697a010.1038/286697a0Search in Google Scholar

[19] Guerin G and Petit RH, 1983. Thermo-luminescence dating of lava flows from Guadeloupe — Some Problems. Comptes Rendus de L’Academie des Sciences Serie II 296(23): 1791–1794. Search in Google Scholar

[20] Guerin G and Samper A, 2007. Aberrant thermoluminescence dates obtained from primary volcanic quartz. Radiation Measurements 42(9): 1453–1459, DOI 10.1016/j.radmeas.2007.03.006. http://dx.doi.org/10.1016/j.radmeas.2007.03.00610.1016/j.radmeas.2007.03.006Search in Google Scholar

[21] Guerin G and Gillot PY, 2007. New elements of chronology of’ Bas Vivarais’ Pleistocene volcanism (Ardèche, France) by thermoluminescence dating. Comptes Rendus Geoscience 339(1): 40–49, DOI 10.1016/j.crte.2006.10.005. http://dx.doi.org/10.1016/j.crte.2006.10.00510.1016/j.crte.2006.10.005Search in Google Scholar

[22] Jakobsson SP, 1972. On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Research Progress Report,VI: 121–128. Search in Google Scholar

[23] Kanemaki M, Ninagawa K, Yamamoto I, Nakagawa M, Wada T, Yamashita Y and Endo K, 1991. Red thermoluminescence of volcanic glass fractions from tephras. Nuclear Tracks and Radiation Measurements 18(1–2): 81–88, DOI 10.1016/1359-0189(91)90097-2. 10.1016/1359-0189(91)90097-2Search in Google Scholar

[24] Liritzis I, Michael C and Galloway RB, 1996. A significant Aegean volcanic eruption during the second millennium B.C. revealed by thermoluminescence dating. Geoarchaeology 11(4): 361–371, DOI 10.1002/(SICI)1520-6548(199607)11:4<361::AID-GEA4>3.0.CO;2-#. http://dx.doi.org/10.1002/(SICI)1520-6548(199607)11:4<361::AID-GEA4>3.0.CO;2-#Search in Google Scholar

[25] MacDonald GA, 1972. Volcanoes. Prentice-Hall, Englewood Cliffs NJ: 510pp. Search in Google Scholar

[26] Mauz B and Lang A, 2004. Removal of the feldspar-derived luminescence component from polymineral fine silt samples for optical dating applications: evaluation of chemical treatment protocols and quality control procedures. Ancient TL 22(1): 1–9. Search in Google Scholar

[27] Miallier D, Fain J, Montret M, Pilleyre T, Sanzelle S and Soumana S, 1991. Properties of the red TL peak of quartz relevant to thermo-luminescence dating. Nuclear Tracks and Radiation Measurements 18(1–2): 89–94, DOI 10.1016/1359-0189(91)90098-3. 10.1016/1359-0189(91)90098-3Search in Google Scholar

[28] Miallier D, Fain J, Sanzelle S, Pilleyre T, Montret M, Soumana S and Falgueres C, 1994a. Attempts at dating pumice deposits around 580-Ka by use of red TL and ESR of xenolithic quartz inclusions. Radiation Measurements 23(2–3): 399–404, DOI 10.1016/1350-4487(94)90070-1. http://dx.doi.org/10.1016/1350-4487(94)90070-110.1016/1350-4487(94)90070-1Search in Google Scholar

[29] Miallier D, Sanzelle S, Falgueres C, Fain J, Montret M, Pilleyre T, Soumana S, Laurent M, Camus G and Deherve AD, 1994b. Intercomparisons of red TL and ESR signals from heated quartz grains. Radiation Measurements 23(1): 143–153, DOI 10.1016/1350-4487(94)90031-0. http://dx.doi.org/10.1016/1350-4487(94)90031-010.1016/1350-4487(94)90031-0Search in Google Scholar

[30] Miallier D, Condomines M, Pilleyre T, Sanzelle S and Guittet J, 2004. Concordant thermoluminescence and U-238-Th-230 ages for a trachytic dome (Grand Sarcoui) from the Chaîne des Puys (French Massif Central). Quaternary Science Reviews 23(5–6): 709–715, DOI 10.1016/j.quascirev.2003.06.002. http://dx.doi.org/10.1016/j.quascirev.2003.06.00210.1016/j.quascirev.2003.06.002Search in Google Scholar

[31] Pilleyre T, Montret M, Fain J, Miallier D and Sanzelle S, 1992. Attempts at dating ancient volcanos using the red TL of quartz. Quaternary Science Reviews 11(1–2): 13–17, DOI 10.1016/0277-3791(92)90036-8. http://dx.doi.org/10.1016/0277-3791(92)90036-810.1016/0277-3791(92)90036-8Search in Google Scholar

[32] Porat N, Levi T and Weinberger R, 2007. Possible resetting of quartz OSL signals during earthquakes — Evidence from late Pleistocene injection dikes, Dead Sea basin, Israel. Quaternary Geochronology 2(1–4): 272–277, DOI 10.1016/j.quageo.2006.05.021. http://dx.doi.org/10.1016/j.quageo.2006.05.02110.1016/j.quageo.2006.05.021Search in Google Scholar

[33] Prescott JR, Robertson GB, Shoemaker C, Shoemaker EM and Wynn J, 2004. Luminescence dating of the Wabar meteorite craters, Saudi Arabia. Journal of Geophysical Research-Planets 109(E1): 1–8, DOI 10.1029/2003JE002136. 10.1029/2003JE002136Search in Google Scholar

[34] Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D and Spencer QG, 2008. Luminescence dating: basics, methods and applications. E&G / Quaternary Science Journal, 57(1–2): 95–149, DOI 10.3285/eg.57.1-2.5. 10.3285/eg.57.1-2.5Search in Google Scholar

[35] Preusser F, Rufer D and Schreurs G, 2011. Direct dating of Quaternary phreatic maar eruptions by luminescence methods. Geology 39: 1135–1138, DOI 10.1130/G32345.1. http://dx.doi.org/10.1130/G32345.110.1130/G32345.1Search in Google Scholar

[36] Richter D and Krbetschek M, 2006. A new thermoluminescence dating technique for heated flint. Archaeometry 48(4): 695–705, DOI 10.1111/j.1475-4754.2006.00281.x. http://dx.doi.org/10.1111/j.1475-4754.2006.00281.x10.1111/j.1475-4754.2006.00281.xSearch in Google Scholar

[37] Rittmann A, 1981. Vulkane und ihre Tätigkeit. Ferdinand Enke Verlag Stuttgart Search in Google Scholar

[38] Rufer D and Preusser F, 2009. Potential of autoradiography to detect spatially resolved radiation patterns in the context of trapped charge dating. Geochronometria 34: 1–13. DOI 10.2478/v10003-009-0014-4. http://dx.doi.org/10.2478/v10003-009-0014-410.2478/v10003-009-0014-4Search in Google Scholar

[39] Sanzelle S, Pilleyre T, Montret M, Fain J, Miallier D, Camus G, de Herve AD and Defleur A, 2000. Thermoluminescence dating: study of a possible chronological correlation between the maar of La Vestide-du-Pal and a tephra layer from La Baume-Moula-Guercy (Ardeche, France). Comptes Rendus de L’Academie des Sciences, Serie II, Fascicule a — Sciences de la Terre et des Planètes 330(8): 541–546. 10.1016/S1251-8050(00)00171-3Search in Google Scholar

[40] Schmincke HU, Park C and Harms E, 1999. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quaternary International 61(1): 61–72, DOI 10.1016/S1040-6182(99)00017-8. http://dx.doi.org/10.1016/S1040-6182(99)00017-810.1016/S1040-6182(99)00017-8Search in Google Scholar

[41] Schmincke HU, 2004. Volcanism. Springer Verlag, Berlin: 334pp. http://dx.doi.org/10.1007/978-3-642-18952-410.1007/978-3-642-18952-4Search in Google Scholar

[42] Schweitzer U, 1997. Thermolumineszenz-Datierbarkeit vulkanischer Gläser des Thera-Vulkans (Santorin-Archipel, Griechenland). (On the datability of volcanic glass of the Thera volcano (Santorin archipelago, Greece) using thermoluminescence). PhD-Thesis, University of Cologne, Cologne. Search in Google Scholar

[43] Sears DW, Ashworth JR, Broadbent CP and Bevan AWR, 1984. Studies of an artificially shock-loaded H-group chondrite. Geochimica Et Cosmochimica Acta 48(2): 343–360. http://dx.doi.org/10.1016/0016-7037(84)90255-210.1016/0016-7037(84)90255-2Search in Google Scholar

[44] Self S and Rampino MR, 1981. The 1883 eruption of Krakatau. Nature 294(5843): 699–704, DOI 10.1038/294699a0. http://dx.doi.org/10.1038/294699a010.1038/294699a0Search in Google Scholar

[45] Spooner NA, 1994. The Anomalous Fading of Infrared-Stimulated Luminescence from Feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-210.1016/1350-4487(94)90111-2Search in Google Scholar

[46] Stankowski WTJ, 2007. Luminescence dating as a diagnostic criterion for the recognition of Quaternary impact craters. Planetary and Space Science 55(7–8): 871–875, DOI 10.1016/j.pss.2006.11.006. http://dx.doi.org/10.1016/j.pss.2006.11.00610.1016/j.pss.2006.11.006Search in Google Scholar

[47] Steck A, 1968. Die alpidischen Strukturen in den Zentralen Aaregraniten des westlichen Aarmassivs (The alpine structures in the central Aar-granites of the western Aar-massif). Eclogae Geologicae Helvetiae 61, 19–48. Search in Google Scholar

[48] Sutton SR, 1985. Thermo-luminescence measurements on shock-metamorphosed sandstone and dolomite from Meteor Crater, Arizona. 1. Shock dependence of thermo-luminescence properties. Journal of Geophysical Research-Solid Earth and Planets 90(B5): 3683–3689, DOI 10.1029/JB090iB05p03683. http://dx.doi.org/10.1029/JB090iB05p0368310.1029/JB090iB05p03683Search in Google Scholar

[49] Thorarinsson S, 1967. The Surtsey eruption. Course of events during the year 1966. Surtsey Research Progress Report III: 84–90. Search in Google Scholar

[50] Tsukamoto S, Murray AS, Huot S, Watanuki T, Denby PM and Botter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190–197, DOI 10.1016/j.radmeas.2006.07.008. http://dx.doi.org/10.1016/j.radmeas.2006.07.00810.1016/j.radmeas.2006.07.008Search in Google Scholar

[51] Tsukamoto S, Duller GAT, Wintle AG and Frechen M, 2010. Optical dating of a Japanese marker tephra using plagioclase. Quaternary Geochronology 5: 274–278, DOI 10.1016/j.quageo.2009.02.002. http://dx.doi.org/10.1016/j.quageo.2009.02.00210.1016/j.quageo.2009.02.002Search in Google Scholar

[52] Tsukamoto S, Duller GAT, Wintle AG and Muhs D, 2011. Assessing the potential for luminescence dating of basalts. Quaternary Geochronology 6(1): 61–70, DOI 10.1016/j.quageo.2010.04.002. http://dx.doi.org/10.1016/j.quageo.2010.04.00210.1016/j.quageo.2010.04.002Search in Google Scholar

[53] Visocekas R and Guerin G, 2006. TL dating of feldspars using their farred emission to deal with anomalous fading. Radiation Measurements 41(7–8): 942–947, DOI 10.1016/j.radmeas.2006.04.023. http://dx.doi.org/10.1016/j.radmeas.2006.04.02310.1016/j.radmeas.2006.04.023Search in Google Scholar

[54] White JDL, 1996. Impure coolants and interaction dynamics of phreatomagmatic eruptions. Journal of Volcanology and Geothermal Research 74(3–4): 155–170, DOI 10.1016/S0377-0273(96)00061-3. http://dx.doi.org/10.1016/S0377-0273(96)00061-310.1016/S0377-0273(96)00061-3Search in Google Scholar

[55] Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[56] Yokoo A, Taniguchi H, Goto A and Oshima H, 2002. Energy and depth of Usu 2000 phreatic explosions. Geophysical Research Letters 29(24), 2195, DOI 10.1029/2002GL015928. http://dx.doi.org/10.1029/2002GL01592810.1029/2002GL015928Search in Google Scholar

[57] Zimanowski B, Frohlich G and Lorenz V, 1991. Quantitative experiments on phreatomagmatic explosions. Journal of Volcanology and Geothermal Research 48(3—4): 341–358, DOI 10.1016/0377-0273(91)90050-A. http://dx.doi.org/10.1016/0377-0273(91)90050-A10.1016/0377-0273(91)90050-ASearch in Google Scholar

[58] Zink AJC and Visocekas R, 1997. Datability of sanidine feldspars using the near-infrared TL emission. Radiation Measurements 27(2): 251–261, DOI 10.1016/S1350-4487(96)00141-2. http://dx.doi.org/10.1016/S1350-4487(96)00141-210.1016/S1350-4487(96)00141-2Search in Google Scholar

[59] Zöller L, Blanchard H and McCammon C, 2009. Can temperature assisted hydrostatic pressure reset the ambient TL of rocks? — A note on the TL of partially heated country rock from volcanic eruptions. Ancient TL 27(1): 15–23. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo