1. bookVolume 38 (2011): Issue 1 (March 2011)
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Open Access

Dating mortar by optically stimulated luminescence: A feasibility study

Published Online: 28 Jan 2011
Volume & Issue: Volume 38 (2011) - Issue 1 (March 2011)
Page range: 42 - 49
Journal Details
License
Format
Journal
eISSN
1897-1695
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Abstract

Quartz is the datable component in mortar. Although its luminescence properties are very well studied, the problem of mortar dating arises from a low level of optical bleaching. In order to reduce the time consuming efforts for dating lime mortar in monuments by optically stimulated luminescence, we investigated the most suitable methods of dose and dose rate determination, and we explored tests which are suitable to predict the datability of a given material. Reverting to the large number of publications on sedimentary partially bleached quartz we found linear modulation techniques especially useful, equally we also recommend the determination of the level of optical depletion before starting analyses. Single grain analysis is regarded as an ultimate but infallible tool to date very poorly bleached quartz from mortar. Dose rate measurements need to take into account the radioactive equilibrium of the uranium decay and the short range inhomogeneity of the environmental gamma radiation field: gamma spectrometry and on-site TLD measurements are best suited.

Keywords

[1] Adamiec G and Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37–50. Search in Google Scholar

[2] Aitken MJ, 1998. An Introduction to Optical Dating. Oxford, Oxford University Press: 276 pp. Search in Google Scholar

[3] Agersnap Larsen N, Bulur E, Bøtter-Jensen L and McKeever SWS, 2000. Use of the LM-OSL technique for the detection of partial bleaching in quartz. Radiation Measurements 32(5–6): 419–425, DOI 10.1016/S1350-4487(00)00071-8. http://dx.doi.org/10.1016/S1350-4487(00)00071-810.1016/S1350-4487(00)00071-8Search in Google Scholar

[4] Ankjærgaard C and Murray AS, 2007. Total beta and gamma dose rates in trapped charge dating based on beta counting. Radiation Measurements 42: 352–359, DOI 10.1016/j.radmeas.2006.12.007. http://dx.doi.org/10.1016/j.radmeas.2006.12.00710.1016/j.radmeas.2006.12.007Search in Google Scholar

[5] Bailey RM, Stokes S and Bray H, 2003. Inductively-coupled plasma mass spectrometry (ICP/MS) for dose rate determination: some guidelines for sample preparation and analysis. Ancient TL 21: 11–15. Search in Google Scholar

[6] Bailiff IK, 2007. Methodological developments in the luminescence dating of brick from English late-medieval and post-medieval buildings. Archaeometry 49: 827–851, DOI 10.1111/j.1475-4754.2007.00338.x. http://dx.doi.org/10.1111/j.1475-4754.2007.00338.x10.1111/j.1475-4754.2007.00338.xSearch in Google Scholar

[7] Banerjee D, Murray AS, Bøtter-Jensen L and Lang A. 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33(1): 73–93, DOI 10.1016/S1350-4487(00)00101-3. http://dx.doi.org/10.1016/S1350-4487(00)00101-310.1016/S1350-4487(00)00101-3Search in Google Scholar

[8] Bøtter-Jensen L, Solongo S, Murray AS, Banerjee D and Jungner H. 2000a. Using OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. Radiation Measurements 32(5–6): 841–845, DOI 10.1016/S1350-4487(00)00066-4. http://dx.doi.org/10.1016/S1350-4487(99)00278-410.1016/S1350-4487(99)00278-4Search in Google Scholar

[9] Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000b. Advances in luminescence instrument systems. Radiation Measurements 32(5–6): 523–538, DOI 10.1016/S1350-4487(00)00039-1. http://dx.doi.org/10.1016/S1350-4487(00)00039-110.1016/S1350-4487(00)00039-1Search in Google Scholar

[10] Bulur E, Bøtter-Jensen L and Murray AS, 2000. Optically stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements 32(5–6): 407–411, DOI 10.1016/S1350-4487(00)00115-3. http://dx.doi.org/10.1016/S1350-4487(00)00115-310.1016/S1350-4487(00)00115-3Search in Google Scholar

[11] Degering D and Krbetschek MR, 2007. Dating of interglacial sediments by luminescence methods. In: Developments in Quarternary Science 7:157–172. Series editor: Jaap JM van der Meer. Elsevier. http://dx.doi.org/10.1016/S1571-0866(07)80036-410.1016/S1571-0866(07)80036-4Search in Google Scholar

[12] Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of sand-sized quartz: sources of variability. Radiation Measurements 32(5–6): 453–457, DOI 10.1016/S1350-4487(00)00055-X. http://dx.doi.org/10.1016/S1350-4487(00)00055-X10.1016/S1350-4487(00)00055-XSearch in Google Scholar

[13] El-Faramawy NA, Göksu HY and Panzer W, 2004. Thermoluminescence dosimetry properties of a new thin beta detector (LiF:Mg, Cu, P; Gr-200F) in comparison with highly sensitive Al2O3:C beta dosimeters. Journal of Radiological Protection 24: 273–282, DOI 10.1088/0952-4746/24/3/006. http://dx.doi.org/10.1088/0952-4746/24/3/00610.1088/0952-4746/24/3/00615511019Search in Google Scholar

[14] Fleming SJ, 1979. Thermoluminescence Techniques in Archaeology. Oxford, Clarendon Press: 233 pp. Search in Google Scholar

[15] Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part I experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

[16] Gilmore G, 2008. Practical Gamma-Ray Spectrometry. New York, John Wiley: 424 pp. http://dx.doi.org/10.1002/978047086198110.1002/9780470861981Search in Google Scholar

[17] Goedicke C, 2003. Dating historical mortars by blue OSL: results from known age samples. Radiation Measurements 37: 409–415, DOI 10.1016/S1350-4487(03)00010-6. http://dx.doi.org/10.1016/S1350-4487(03)00010-610.1016/S1350-4487(03)00010-6Search in Google Scholar

[18] Goedicke C, 2006. Assessment of environmental dose rates in luminescence readers using α-Al2O3:C. Radiation Measurements 41: 36–39, DOI 10.1016/j.radmeas.2005.02.006. http://dx.doi.org/10.1016/j.radmeas.2005.02.00610.1016/j.radmeas.2005.02.006Search in Google Scholar

[19] Goedicke C and Dolata J, 2007. Unpublished. Search in Google Scholar

[20] Göksu HY, Bulur E and Wahl W, 1999. Beta dosimetry using thin-layer α-Al2O3:C TL detectors. Radiation Protection Dosimetry 84(1–4): 451–455. 10.1093/oxfordjournals.rpd.a032775Search in Google Scholar

[21] Hale J, Heinemeier J, Lancaster L, Lindross A and Ringbom Å, 2003. Dating ancient mortar. American Scientist: 91, 130 ff, DOI 10.1511/2003.2.130. 10.1511/2003.2.130Search in Google Scholar

[22] Jain M, Thomsen KJ, Bøtter-Jensen L, Murray AS, 2004. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: results from single grains and small aliquots of quartz. Radiation Measurements 38: 101–109, DOI 10.1016/j.radmeas.2003.07.002. http://dx.doi.org/10.1016/j.radmeas.2003.07.00210.1016/j.radmeas.2003.07.002Search in Google Scholar

[23] Jain M, Murray AS, Bøtter-Jensen L and Wintle AG, 2005. A single-aliquot regenerative-dose method based on IR (1.49 eV) bleaching of the fast component in quartz. Radiation Measurements 39: 309–318, DOI 10.1016/j.radmeas.2004.05.004. http://dx.doi.org/10.1016/j.radmeas.2004.05.00410.1016/j.radmeas.2004.05.004Search in Google Scholar

[24] Lindroos A, Heinemeier J, Ringbom Å, Braskén M and Sveinbjörnsdóttir Á, 2007. Mortar Dating Using AMS 14C and Sequential Dissolution: Examples from Medieval, Non-Hydraulic Lime Mortars from the Åland Islands, SW Finland. Radiocarbon 49: 47–67. 10.1017/S0033822200041898Search in Google Scholar

[25] Martini M and Sibilia E, 2006. Absolute dating of historical buildings: the contribution of thermoluminescence (TL). Journal of Neutron Research 14: 69–74, DOI 0.1080/10238160600673326. http://dx.doi.org/10.1080/1023816060067332610.1080/10238160600673326Search in Google Scholar

[26] Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[27] Nawrocka D, Michiniewicz J, Pawlyta J and Pazdur A, 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24: 109–115. Search in Google Scholar

[28] Preusser F and Kasper HU, 2001. Comparison of dose rate determination using high-resolution gamma spectroscopy and inductively coupled plasma-mass spectrometry. Ancient TL 19: 19–23. Search in Google Scholar

[29] Scharf A, 2007. Datenanalyse und Qualitätssicherung der 14C-AMSMessungen am Erlanger Tandembeschleuniger und Erweiterung des Sortiments 14C-datierbarer Probenmaterialien. Unpublished PhD thesis, Friedrich-Alexander University, Erlangen-Nürnberg. Search in Google Scholar

[30] Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001. http://dx.doi.org/10.1016/j.radmeas.2005.11.00110.1016/j.radmeas.2005.11.001Search in Google Scholar

[31] Zacharias N, Mauz B and Michael CT, 2002. Luminescence quartz dating of lime mortars. A first research approach. Radiation Protection Dosimetry 101: 379–382. 10.1093/oxfordjournals.rpd.a00600612382772Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo