Open Access

Changes of enzymatic antioxidant system in the small intestine of rats after the chronic invasion by Hymenolepis diminuta (Cestoda, Hymenolepididae)


Cite

[1] Barnes, P. J. (1990): Reactive oxygen species and airway inflammation. Free Radic. Biol. Med., 9: 235–243. DOI: 10.1016/0891-5849(90)90034-G http://dx.doi.org/10.1016/0891-5849(90)90034-G10.1016/0891-5849(90)90034-GSearch in Google Scholar

[2] Beauchamp, Ch., Fridovich, I. (1971): Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal. Biochem., 44: 276–287 http://dx.doi.org/10.1016/0003-2697(71)90370-810.1016/0003-2697(71)90370-8Search in Google Scholar

[3] Bradford, M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar

[4] Conner, E. M., Grisham, M. B. (1996): Inflammation, free radicals and antioxidants. Nutrition, 12: 274–277 http://dx.doi.org/10.1016/S0899-9007(96)00000-810.1016/S0899-9007(96)00000-8Search in Google Scholar

[5] Dwinell, M. B., Bass, P., Oaks, J. A. (1994): Intestinal myoelectric alterations in rats chronically infected with the tapeworm Hymenolepis diminuta. Am. J. Physiol., 267: 851–858 Search in Google Scholar

[6] Dwinell, M. B., Bass, P., Schaefer, D. M., Oaks, J. A. (1997): Tapeworm infection decreases intestinal transit and enteric aerobic bacterial populations. Am. J. Physiol., 273: 480–485 Search in Google Scholar

[7] Dwinell, M. B., Wise, R. M., Bass, P., Oaks, J. A. (1998): Hymenolepis diminuta: mucosal mastocytosis and intestinal smooth muscle hypertrophy occur in tapeworminfected rats. Exp. Parasitol., 89: 92–102 http://dx.doi.org/10.1006/expr.1998.427110.1006/expr.1998.4271Search in Google Scholar

[8] Dzik, J. M. (2006): Molecules released by helminthes parasites involved in host colonization. Acta Bioch. Pol., 53: 33–64 Search in Google Scholar

[9] Ellman, G. L. (1959): Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82: 70–77. DOI: 10.1016/0003-9861(59)90090-6 http://dx.doi.org/10.1016/0003-9861(59)90090-610.1016/0003-9861(59)90090-6Search in Google Scholar

[10] Fal, W., Czaplicka, H. (1991): Effect of experimental hymenolepiasis on various tissue reactions in rats. Wiad. Parazytol., 37: 331–342 Search in Google Scholar

[11] Fattman, C. L., Schafter, M., Oury, T. D. (2003): Extracellular superoxide dismutase in biology and medicine. Free Rad. Biol. Med., 35: 226–256. DOI: 10.1016/S0891-5849(03)00402-7 http://dx.doi.org/10.1016/S0891-5849(03)00316-210.1016/S0891-5849(03)00402-7Search in Google Scholar

[12] Fridovich, I. (1997): Superoxide anion radical (O2−), superoxide dismutases, and related matters. J. Biol. Chem., 272: 18515–18517. DOI: 10.1074/jbc.272.30.18515 http://dx.doi.org/10.1074/jbc.272.30.1851510.1074/jbc.272.30.18515Search in Google Scholar

[13] Gate, L., Paul, J., Nguuyen, B. A., Tew, K., Tapiero, H. (1999): Oxidative stress induced in pathologies: the role of antioxidants. Biomed. Pharmacotherapy, 53: 169–180. DOI: 10.1074/jbc.272.30.18515 http://dx.doi.org/10.1016/S0753-3322(99)80086-910.1074/jbc.272.30.18515Search in Google Scholar

[14] Goldberg, D. M., Spooner, R. J. (1983): Glutathione reductase. In: Bergmeyer H. V. (Ed) Methods of Enzymatic Analysis. Volume 3. Verlag Chemie, Weinheim, pp. 258–265 Search in Google Scholar

[15] Goth, L. (1999): A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta., 196: 143–151 http://dx.doi.org/10.1016/0009-8981(91)90067-M10.1016/0009-8981(91)90067-MSearch in Google Scholar

[16] Habig, W. H., Pabst, M., Jacoby, W. (1974): Glutathione S-transferase, the first step in mercapturic acid formation. J. Biol. Chem., 249: 7130–7139 Search in Google Scholar

[17] Hayes, J. D., Mclellan, L. I. (1999): Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Rad. Res., 31: 273–300. DOI: 10.1054/drup.1999.0083 http://dx.doi.org/10.1080/1071576990030085110.1054/drup.1999.0083Search in Google Scholar

[18] Klion, A. D., Nutman, T. B. (2004): The role of eosinophils in host defense against helminth parasites. J. Aller. Clin. Immunol., 113: 30–37. DOI: 10.1016/j.jaci.2003.10.050 http://dx.doi.org/10.1016/j.jaci.2003.10.05010.1016/j.jaci.2003.10.050Search in Google Scholar

[19] Kosik-Bogacka, D. I., Baranowska-Bosiacka, I., Salamatin, R. (2010): Hymenolepis diminuta: effect of infection on ion transport in colon and blood picture of rat. Exp. Parasitol., 124: 285–294. DOI: 10.1016/j.exppara.2009.10.014 http://dx.doi.org/10.1016/j.exppara.2009.10.01410.1016/j.exppara.2009.10.014Search in Google Scholar

[20] Kosik-Bogacka, D.I., Baranowska-Bosiacka, I., Noceń, I., Jakubowska, K. (2011): Hymenolepis diminuta: Activity of anti-oxidant enzymes in different parts of rat gastrointestinal tract. Exp. Parasitol., 128(3): 265–271. DOI: 10.1016/j.exppara.2010.09.001 http://dx.doi.org/10.1016/j.exppara.2011.02.02610.1016/j.exppara.2010.09.001Search in Google Scholar

[21] Machnicka-Rowińska, B., Dziemian, E. (2003): Eosynophils in parasitic infections — clinical and functional significance. Wiad. Parazytol., 49: 245–254 Search in Google Scholar

[22] Mettrick, D. F. (1980): The intestine as an environment for Hymenolepis diminuta. In: Arai H. P. (Ed)) Biology of the tapeworm Hymenolepis diminuta. (Academic Press, New York, pp. 281–356 10.1016/B978-0-12-058980-7.50009-9Search in Google Scholar

[23] Milazzo, C., Ribas, A., Casanova, J. C., Cagnin, M., Geraci, F., Di Bella, C. (2010): Helminths of the brown rat (Rattus norvegicus) (Berkenhout, 1769) in the city of Palermo, Italy. Helminthologia., 47(4): 238–240. DOI: 10.2478/s11687-010-0037-4 http://dx.doi.org/10.2478/s11687-010-0037-410.2478/s11687-010-0037-4Search in Google Scholar

[24] Oberley, L. W., Spitz, D. R. (1984): Assay of superoxide dismutase activity in tumor tissue. Meth. Enzymol., 105: 457–464. DOI: 10.1016/S0076-6879(84)05064-3 http://dx.doi.org/10.1016/S0076-6879(84)05064-310.1016/S0076-6879(84)05064-3Search in Google Scholar

[25] Ohkawa, H., Ohishi, N., Yagi, K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351–358. DOI: 10.1016/0003-2697(79)90738-3 http://dx.doi.org/10.1016/0003-2697(79)90738-310.1016/0003-2697(79)90738-3Search in Google Scholar

[26] Oshima, H., Tademichi, M., Sawa, T. (2003): Chemical basis of inflammation — induced carcinogenesis. Arch. Biochem. Biophys., 417: 3–11 http://dx.doi.org/10.1016/S0003-9861(03)00283-210.1016/S0003-9861(03)00283-2Search in Google Scholar

[27] Paglia, D., Valentine, W. (1967): Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J. Lab. Clin. Med., 70: 158–168 Search in Google Scholar

[28] Pastore, A., Fedrici, E., Bertini, F., Piemonte, S. (2003): Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta., 33: 19–39. DOI: 10.1016/S0009-8981(03)00200-6 http://dx.doi.org/10.1016/S0009-8981(03)00200-610.1016/S0009-8981(03)00200-6Search in Google Scholar

[29] Podesta, R. B., Mettrick, D. F. (1977): Proximal-distal absorptive gradients in the in vivo intestine of normal and infected (Hymenolepis diminuta:Cestoda) rats. Canad. J. Physiol. Pharm., 55: 791–803. DOI: 10.1139/y77-107 http://dx.doi.org/10.1139/y77-10710.1139/y77-107Search in Google Scholar

[30] Sedlak, J., Lindsay, R. H. (1968): Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 25: 192–205. DOI: 10.1016/0003-2697(68)90092-4 http://dx.doi.org/10.1016/0003-2697(68)90092-410.1016/0003-2697(68)90092-4Search in Google Scholar

[31] Sen, C. K. (2000): Biological thiols and redox-regulated signal transduction. Curr. Top. Cell. Regul., 36: 1–30. DOI: 10.1016/B978-044482650-3/50015-8 http://dx.doi.org/10.1016/S0070-2137(01)80001-710.1016/B978-044482650-3/50015-8Search in Google Scholar

[32] Shin, M. H., Lee, Y. A., Min, D. Y. (2009): Eosinophilmediated tissue inflammatory responses in helminth infection. Korean J. Parasitol., 47Suppl.: 125–131. DOI: 10.3347/kjp.2009.47.S.S125 http://dx.doi.org/10.3347/kjp.2009.47.2.12510.3347/kjp.2009.47.S.S125Search in Google Scholar

[33] Sies, H. (1999): Glutathione and its cellular functions. Free Radic. Biol. Med., 27: 916–921. DOI: 10.1016/S0891-5849(99)00177-X http://dx.doi.org/10.1016/S0891-5849(99)00177-X10.1016/S0891-5849(99)00177-XSearch in Google Scholar

[34] Starke, W. A., Oaks, J. A. (2001): Ilea mucosal mast cell, eosinophil, and goblet cell populations during Hymenolepis diminuta infection of the rat. J. Parasitol., 87:1222–1225. DOI: 10.2307/3285276 10.2307/3285276Search in Google Scholar

[35] Wendel, A. (1981): Glutathione peroxidase. Meth. Enzymol., 77: 325–333. DOI: 10.1016/S0076-6879(81)77046-0 http://dx.doi.org/10.1016/S0076-6879(81)77046-010.1016/S0076-6879(81)77046-0Search in Google Scholar

[36] Zelko, I. N., Mariani, T. J., Folz, R. J. (2002): Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med., 33: 337–349. DOI: 10.1016/S08915849(02)00905-X http://dx.doi.org/10.1016/S0891-5849(02)00905-XSearch in Google Scholar

eISSN:
1336-9083
ISSN:
0440-6605
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Zoology, Ecology, other, Medicine, Clinical Medicine, Microbiology, Virology and Infection Epidemiology