Open Access

Extraction of Apple Pomace Using Supercritical CO2 Extraction


Cite

Foof and Agriculture Organization of the United Nations. Fruit and vegetables-your dietary essentials. The International Year of Fruits and Vegetables, 2021, background paper. Rome, Italy, 2020. https://doi.org/10.4060/cb2395en Search in Google Scholar

De Laurentiis V., Corrado S., Sala S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manag. 2018:77:238–251. https://doi.org/10.1016/j.wasman.2018.04.001 Search in Google Scholar

Kennedy, M. et al. Apple Pomace and Products Derived from Apple Pomace: Uses, Composition and Analysis. In: Linskens, H. F., Jackson, J. F. (eds) Analysis of Plant Waste Materials. Modern Methods of Plant Analysis, vol 20. Springer, Berlin, Heidelberg, 1999:75–119. https://doi.org/10.1007/978-3-662-03887-1_4 Search in Google Scholar

Fierascu R. C., Sieniawska E., Ortan A., Fierascu I., Xiao J. Fruits By-Products – A Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020:8:1–8. https://doi.org/10.3389/fbioe.2020.00319 Search in Google Scholar

Pollini L., Cossignani L., Juan C., Mañes J. Extraction of Phenolic Compounds from Fresh Apple Pomace by Different Non-Conventional Techniques. Mol 2021:26(14):4272. https://doi.org/10.3390/molecules26144272 Search in Google Scholar

Statista. Apple production worldwide 2020. [Online]. [Accessed: 12.12.2022]. Available: https://www.statista.com/statistics/961248/production-of-apples-worldwide/ (accessed Dec. 12, 2022). Search in Google Scholar

Sudha M. L. Chapter 36 - Apple Pomace (By-Product of Fruit Juice Industry) as a Flour Fortification Strategy. Flour Breads their Fortif. Heal. Dis. Prev. 2011:395–405. https://doi.org/10.1016/B978-0-12-380886-8.10036-4 Search in Google Scholar

Vendruscolo F., Albuquerque P. M., Streit F., Esposito E., Ninow J. L. Apple Pomace: A Versatile Substrate for Biotechnological Applications. Critical Reviews in Biotechnology 2008:28(1):1–12. https://doi.org/10.1080/07388550801913840 Search in Google Scholar

Ferrentino G., Morozova K., Mosibo O. K., Ramezani M., Scampicchio M. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod. 2018:186:253–261. https://doi.org/10.1016/j.jclepro.2018.03.165 Search in Google Scholar

Pinelo M., Ruiz-Rodríguez A., Sineiro J., Señoráns F. J., Reglero G., Núñez M. J. Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: A comparative study. Eur. Food Res. Technol. 2007:226(1–2):199–205. https://doi.org/10.1007/s00217-006-0526-3 Search in Google Scholar

Kaur C., Kapoor H. C. Antioxidants in fruits and vegetables – the millennium’s health. Int. J. Food Sci. Technol. 2001:36(7):703–725. https://doi.org/10.1111/j.1365-2621.2001.00513.x Search in Google Scholar

Kondo S., Tsuda K., Muto N., Ueda J. E. Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci. Hortic. (Amsterdam) 2002:96(1–4):177–185. https://doi.org/10.1016/S0304-4238(02)00127-9 Search in Google Scholar

Czech A., Malik A., Sosnowska B., Domaradzki P. Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. Int. J. Food Sci. 2021. https://doi.org/10.1155/2021/6662259 Search in Google Scholar

Kusch-Brandt S., Mumme J., Nashalian O., Girotto F., Lavagnolo M. C., Udenigwe C. Valorization of Residues From Beverage Production. Process. Sustain. Beverages 2019:2:451–494. https://doi.org/10.1016/B978-0-12-815259-1.00013-6 Search in Google Scholar

Bhushan S., Kalia K., Sharma M., Singh B., Ahuja P. S. Processing of Apple Pomace for Bioactive Molecules. 2008:28(4):285–296. https://doi.org/10.1080/07388550802368895 Search in Google Scholar

Raventós M., Duarte S., Alarcón R. Application and Possibilities of Supercritical CO2 Extraction in Food Processing Industry: An Overview. Food Sci. Technol. Int. 2002:8(5):269–284. https://doi.org/10.1106/108201302029451 Search in Google Scholar

Del Valle J. M., La Fuente J. C. D. Supercritical CO2 Extraction of Oilseeds: Review of Kinetic and Equilibrium Models. Critical Reviews in Food Science and Nutrition 2006:46(2):131–160. https://doi.org/10.1080/10408390500526514 Search in Google Scholar

Díaz-Reinoso B., Moure A., Domínguez H., Parajó J. C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006:54(7):2441–2469. https://doi.org/10.1021/jf052858j Search in Google Scholar

Woźniak L., et al. Extraction of Triterpenic Acids and Phytosterols from Apple Pomace with Supercritical Carbon Dioxide: Impact of Process Parameters, Modelling of Kinetics, and Scaling-Up Study. Molecules 2018:23(11):2790. https://doi.org/10.3390/molecules23112790 Search in Google Scholar

Tulej W., Głowacki S. Modeling of the Drying Process of Apple Pomace. Appl. Sci. 2022:12(3):1434. https://doi.org/10.3390/app12031434 Search in Google Scholar

Sublimācijas iekārtas un tās iespējas. (Sublimation equipment and its possibilities). [Online]. [Accessed: 14.12.2022]. Available: https://sublimat.lv/en/276-2/ (In Latvian). Search in Google Scholar

Labochema. Gāzu hromatogrāfija. (Gas chromatography). [Online]. [Accessed: 14.04.2023]. Available: https://www.labochema.lv/products/gazes-hromatografija/ (In Latvian). Search in Google Scholar

LGS Standards. 60670-33-9. Methyl Myristate-d3 [Online]. [Accessed: 14.04.2023]. Available: https://www.trc-canada.com/product-detail/?M227602 Search in Google Scholar

Dionisio K. L., et al. Data Descriptor: The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 2018:5:180125. https://doi.org/10.1038/sdata.2018.125 Search in Google Scholar

Methyl Heptanoate – acme synthetic chemicals. [Online]. [Accessed: 14.04.2023]. Available: https://acmechem.com/methyl-heptanoate-2/ Search in Google Scholar

Fisher Scientific. Methyl stearate, 99 %, Thermo Scientific Chemicals. [Online]. [Accessed: 14.04.2023]. Available: https://www.fishersci.com/shop/products/methyl-stearate-99-thermo-scientific/AAA1326506 Search in Google Scholar

MedChemExpress. Methyl arachidonate. [Online]. [Accessed: 14.04.2023]. Available: https://www.medchemexpress.com/methyl-arachidonate.html Search in Google Scholar

Global Green Chemicals. Methyl Ester. [Online]. [Accessed: 14.04.2023]. Available: https://www.ggcplc.com/en/businesses/methyl-ester Search in Google Scholar

SCBT – Santa Cruz Biotechnology. Methyl palmitoleate, CAS 1120-25-8. [Online]. [Accessed: 14.04.2023]. Available: https://www.scbt.com/p/methyl-palmitoleate-1120-25-8 Search in Google Scholar

Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Flavouring Group Evaluation 5 (FGE.05); Esters of 23 branched- and straight-chain aliphatic saturated primary alcohols and of one secondary alcohol, and 24 branched- and straight-chain unsaturated carboxylic. EFSA J. 2005:3(7). https://doi.org/10.2903/j.efsa.2005.204 Search in Google Scholar

FooDB. Showing Compound Methyl linoleate (FDB012761). [Online]. [Accessed: 14.04.2023]. Available: https://foodb.ca/compounds/FDB012761 Search in Google Scholar

Huang T. H., Wang P. W., Yang S. C., Chou W. L., Fang J. Y. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs 2018:16(8):256. https://doi.org/10.3390/md16080256 Search in Google Scholar

Whelan J., Fritsche K. Linoleic Acid. Advances in Nutrition 2013:4(3):311–312. https://doi.org/10.3945/an.113.003772 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other