Open Access

Fungal Hydrolysis of Food Waste: Review of Used Substrates, Conditions, and Microorganisms


Cite

Torres-León C., Chávez-González M. L., Hernández-Almanza A., Martínez-Medina G. A., Ramírez-Guzmán N., Londoño-Hernández L., Aguilar C. N. Recent advances on the microbiological and enzymatic processing forconversion of food wastes to valuable bioproducts. Curr Opin Food Sci 2020:38:40–45. https://doi.org/10.1016/j.cofs.2020.11.002 Search in Google Scholar

Chavan S., Yadav B., Atmakuri A., Tyagi R. D., Wong J. W. C., Drogui P. Bioconversion of organic wastes into value-added products: A review. Bioresource Technology 2022:344(PartB):126398. https://doi.org/10.1016/j.biortech.2021.126398 Search in Google Scholar

Narisetty V., Adlakha N., Singh N. K., Dalei S., Prabhu A. A., Nagarajan S., Kumar A. N., Kumar G., Singh V., Kumar V. Integrated Biorefineries for Repurposing of Food Wastes into Value-added Products. Bioresource Technology 2022:363:127856. https://doi.org/10.1016/j.biortech.2022.127856 Search in Google Scholar

Pan F-D., Liu S., Xu Q. M., Chen X. Y., Cheng J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J 2021:172:108036. https://doi.org/10.1016/j.bej.2021.108036 Search in Google Scholar

Merrylin J., Preethi G. D. Saratale, Banu J. R. Production of biopolymers and feed protein from food wastes. Food Waste to Valuable Resources: Applications and Management 2020:143–162. https://doi.org/10.1016/B978-0-12-818353-3.00007-9 Search in Google Scholar

Kwan T. H., Hu Y., Lin S. Z. K. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol 2016:217:129–136. https://doi.org/10.1016/j.biortech.2016.01.134 Search in Google Scholar

Muniz C. E. S., Santiago Â. M., Gusmão T. A. S., Oliveira H. M. L., Conrado L. de S., de Gusmão R. P. Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. Biocatal Agric Biotechnol 2020:25:101576. https://doi.org/10.1016/j.bcab.2020.101576 Search in Google Scholar

Vidal-Antich C., Peces M., Perez-Esteban N., Mata-Alvarez J., Dosta J., Astals S. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Science of the Total Environment 2022:849:157920. https://doi.org/10.1016/j.scitotenv.2022.157920 Search in Google Scholar

European Commission, Directorate-General for Research and Innovation, A sustainable bioeconomy for Europe – Strengthening the connection between economy, society and the environment – Updated bioeconomy strategy, Publications Office, 2018. https://data.europa.eu/doi/10.2777/792130 Search in Google Scholar

Areniello M., Matassa S., Esposito G., Lens P. N. L. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol 2022:41(2):197–213. https://doi.org/10.1016/j.tibtech.2022.07.008 Search in Google Scholar

Heureux A.M.C., Matsumoto T.K. Toward a zero-waste model: Potential for microorganism growth on agricultural waste products in Hawaii. Algal Research 2022:62:102640. https://doi.org/10.1016/j.algal.2022.102640 Search in Google Scholar

Fernandes De Brito L., Qin W., Sanitá M., Ca L. M., Coutinho De Lucas R., Lima M. S. Co-cultivation, Co-culture, Mixed Culture, and Microbial Consortium of Fungi: An Understudied Strategy for Biomass Conversion. Frontiers in Microbiology 2022:12:837685. https://doi.org/10.3389/fmicb.2021.837685 Search in Google Scholar

Fang W., Zhang X., Zhang P., Wan J., Guo H., Ghasimi Dara S.M., Morera X. C. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences 2020:87:93–111. https://doi.org/10.1016/j.jes.2019.05.027 Search in Google Scholar

Peces M., Pozo G., Koch K., Dosta J., Astals S. Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario. Bioresour Technol 2019:300:122561. https://doi.org/10.1016/j.biortech.2019.122561 Search in Google Scholar

Perez-Esteban N., et al. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. Science of the Total Environment 2022:813:152498. https://doi.org/10.1016/j.scitotenv.2021.152498 Search in Google Scholar

Tu W. C., Hallett J. P. Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 2019:20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004 Search in Google Scholar

Madhavan A., et al. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. Bioresource Technology 2021:325:124617. https://doi.org/10.1016/j.biortech.2020.124617 Search in Google Scholar

Ma Y., Cai W., Liu Y. An integrated engineering system for maximizing bioenergy production from food waste. Applied Energy 2017:206:83–89. https://doi.org/10.1016/j.apenergy.2017.08.190 Search in Google Scholar

Katsimpouras C., Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021:69:91–102. https://doi.org/10.1016/j.copbio.2020.12.003 Search in Google Scholar

Saha B. C., Qureshi N., Kennedy G. J., Cotta M. A. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 2016:109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020 Search in Google Scholar

Chen H., Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews 2016:57:468–478. https://doi.org/10.1016/j.rser.2015.12.069 Search in Google Scholar

Edmunds C. W., et al. Fungal Pretreatment and Enzymatic Hydrolysis of Genetically-modified Populus trichocarpa. 2020:15(3):6488-6505. https://doi.org/10.15376/biores.15.3.6488-6505 Search in Google Scholar

Tian fei X., Fang Z., Guo F. Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining 2012:6(3):335–350. https://doi.org/10.1002/bbb.346 Search in Google Scholar

Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresource Technology 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139 Search in Google Scholar

Leung C. C. J., Cheung A. S. Y., Zhang A. Y. Z., Lam K. F., Lin C. S. K. Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 2012:65:10–15. https://doi.org/10.1016/j.bej.2012.03.010 Search in Google Scholar

Yang R., Chen Z., Hu P., Zhang S., Luo G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. Bioresour Technol 2022:361:127677. https://doi.org/10.1016/j.biortech.2022.127677 Search in Google Scholar

de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221 Search in Google Scholar

Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010 Search in Google Scholar

Enrique Blas T. G. Digestion of starch and sugars. CABI Publishing, Wallingford, UK, 1998. Search in Google Scholar

Carrasco M., Villarreal P., Barahona S., Alcaíno J., Cifuentes V., Baeza M. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 2016:16:21. https://doi.org/10.1186/s12866-016-0640-8 Search in Google Scholar

Arman Z., et al. Screening of amylolytic and cellulolytic yeast from Dendrobium spathilingue in Bali Botanical Garden, Indonesia. AIP Conf. Proc. 2020:2242:050013. https://doi.org/10.1063/5.0007802 Search in Google Scholar

Touijer H., Benchemsi N., Ettayebi M., Janati Idrissi A., Chaouni B., Bekkari H. Thermostable Cellulases from the Yeast Trichosporon sp. Enzyme Res 2019: Article 2790414. https://doi.org/10.1155/2019/2790414 Search in Google Scholar

Bullerman L. B. Spoilage. Fungi in Food – An Overview. Encyclopedia of Food Sciences and Nutrition. pp. 2003:5511–5522. https://doi.org/10.1016/B0-12-227055-X/01129-9 Search in Google Scholar

What Are the Factors That Affect Fungal Alpha Amylase Activity? – Jiangsu Yiming Biological Technology Co., Ltd. [Online]. [Accessed 29.12.2022]. Available: https://www.yimingbiotechnology.com/what-are-the-factors-that-affect-fungal-alpha-amylase-activity.html Search in Google Scholar

Pardo A. G., Forchiassin F. Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. PubMed 1999:31(1):31–35. Search in Google Scholar

Doriya K., Jose N., Gowda M., Kumar D. S. Solid-State Fermentation vs Submerged Fermentation for the Production of L-Asparaginase. Advances in Food and Nutrition Research 2016:78:115–135. https://doi.org/10.1016/bs.afnr.2016.05.003 Search in Google Scholar

O-Thong S., Mamimin C., Kongjan P., Reungsang A. Two-stage fermentation process for bioenergy and biochemicals production from industrial and agricultural wastewater. Advances in Bioenergy 2020:5:249–308. https://doi.org/10.1016/bs.aibe.2020.04.007 Search in Google Scholar

Martín-Sampedro R., et al. Endophytic Fungi as Pretreatment to Enhance Enzymatic Hydrolysis of Olive Tree Pruning. BioMed Research International 2017: Article 9727581. https://doi.org/10.1155/2017/9727581 Search in Google Scholar

El Gnaoui Y., Frimane A., Lahboubi N., Herrmann C., Barz M., El Bari H. Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: Kinetic study and statistical variable selection. Cleaner Waste Systems 2022:2:100005. https://doi.org/10.1016/j.clwas.2022.100005 Search in Google Scholar

Pleissner D., Lam W. C., Sun Z., Lin C. S. K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology 2013:137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088 Search in Google Scholar

Su W., et al. Dynamics of defatted rice bran in physicochemical characteristics, microbiota and metabolic functions during two-stage co-fermentation. Int J Food Microbiol 2021:362:109489. https://doi.org/10.1016/j.ijfoodmicro.2021.109489 Search in Google Scholar

Yin Y., Liu Y. J., Meng S. J., Kiran E. U., Liu Y. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion. Appl Energy 2016:179:1131–1137. https://doi.org/10.1016/j.apenergy.2016.07.083 Search in Google Scholar

Souza Filho P. F., Zamani A., Taherzadeh M. J. Edible Protein Production by Filamentous Fungi using Starch Plant Wastewater. Waste Biomass Valorization 2019:10:2487–2496. https://doi.org/10.1007/s12649-018-0265-2 Search in Google Scholar

Dorado M. P., Lin S. K. C., Koutinas A., Du C., Wang R., Webb C. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J Biotechnol 2009:143(1):51–59. https://doi.org/10.1016/j.jbiotec.2009.06.009 Search in Google Scholar

Godoy M. G., Amorim G. M., Barreto M. S., Freire D. M. G. Agricultural Residues as Animal Feed. Current Developments in Biotechnology and Bioengineering 2018:235–256. https://doi.org/10.1016/B978-0-444-63990-5.00012-8 Search in Google Scholar

Dai X., Sharma M., Chen J. Fungi in sustainable food production. Fungal Bio. Scotland, United Kingdom, 2021. https://doi.org/10.1007/978-3-030-64406-2 Search in Google Scholar

Ong A., Lee C. L. K. Cooperative metabolism in mixed culture solid-state fermentation. LWT 2021:152:112300. https://doi.org/10.1016/j.lwt.2021.112300 Search in Google Scholar

Zhao G., Ding L. L., Pan Z. H., Kong D. H., Hadiatullah H., Fan Z. C. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 2019:271:606–613. https://doi.org/10.1016/j.foodchem.2018.07.199 Search in Google Scholar

Peciulyte A., Pisano M., de Vries R. P., Olsson. Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail. Biotechnol Lett 2017:39:1403–1411. https://doi.org/10.1007/s10529-017-2371-9 Search in Google Scholar

Sakarika M., et al. Production of microbial protein from fermented grass. Chemical Engineering Journal 2022:433(2):133631. https://doi.org/10.1016/j.cej.2021.133631 Search in Google Scholar

Kavitha S., Jayashree C., Adish Kumar S., Yeom I. T., Rajesh Banu J. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol 2014:168:159–166. https://doi.org/10.1016/j.biortech.2014.01.118 Search in Google Scholar

Nataraja S., Chetan D. M., Krishnappa M. Effect of temperature on cellulose enzyme activity in crude extracts isolated from solid wastes microbes. Int J Microbiol Res 2010:2(2):44–47. https://doi.org/10.9735/0975-5276.2.2.44-47 Search in Google Scholar

Lam W. C., Pleissner D., Sze C., Lin K. Production of Fungal Glucoamylase for Glucose Production from Food Waste. Biomolecules 2013:3:651–661. https://doi.org/10.3390/biom3030651 Search in Google Scholar

Ding H. H., Chang S., Liu Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour Technol 2017:244(P1):989–995. https://doi.org/10.1016/j.biortech.2017.08.064 Search in Google Scholar

Barapatre S., Rastogi M., Savita, Nandal M. Isolation of fungi and optimization of ph and temperature for cellulase production. Nature Environment and Pollution Technology 2020:19(4):1729–1735. https://doi.org/10.46488/NEPT.2020.v19i04.044 Search in Google Scholar

Lin H., Chen W., Ding H. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes. PLoS One 2013:8(10). https://doi.org/10.1371/journal.pone.0075726 Search in Google Scholar

Daniela Q., Federica B., Lofaro F. D. The biology of vascular calcification. International Review of Cell and Molecular Biology 2020:354:261–353. https://doi.org/10.1016/bs.ircmb.2020.02.007 Search in Google Scholar

Wang R., et al. Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable. PLoS One 2017:12(2). https://doi.org/10.1371/journal.pone.0171926 Search in Google Scholar

Pleissner D., Kwan T. H., Lin C. S. K. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 2014:158:48–54. https://doi.org/10.1016/j.biortech.2014.01.139 Search in Google Scholar

Li X., Mettub S., Martin G. J. O., Ashokkumarb M. Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry 2019:53:77–82. https://doi.org/10.1016/j.ultsonch.2018.12.035 Search in Google Scholar

Rahaman A., Kumari A., Zeng X.-A., Farooq M. A., Siddique R., Khalifa I., Siddeeg A., Ali M., Manzoor M. F. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry 2021:80:105795. https://doi.org/10.1016/j.ultsonch.2021.105795 Search in Google Scholar

Hu A., et al. Ultrasonically aided enzymatical effects on the properties and structure of mung bean starch. Innovative Food Science and Emerging Technologies 2013:20:146–151. https://doi.org/10.1016/j.ifset.2013.08.005 Search in Google Scholar

Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol 2015:43(1):1–17. https://doi.org/10.1016/j.tifs.2014.12.008 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other