Open Access

Economic Analysis of Mobile Thermal Energy Storages as Complement to District Heating


Cite

Euroheat&Power. DHC Market Outlook. 2023. Search in Google Scholar

Rušeljuk P., Volkova A., Lukić N., Lepiksaar K., Nikolić N., Nešović A., Siirde A. Factors Affecting the Improvement of District Heating. Case Studies of Estonia and Serbia. Environmental and Climate Technologies 2021:24(3):521–533. https://doi.org/10.2478/rtuect-2020-0121 Search in Google Scholar

Postnikov I. Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems. Environmental and Climate Technologies 2021:24(3):145–162. https://doi.org/10.2478/rtuect-2020-0093 Search in Google Scholar

Pakere I., Lauka D., Dolge K., Vitolins V., Polikarpova I., Holler S., Blumberga D. Climate Index for District Heating System. Environmental and Climate Technologies 2020:24(1):406–418. https://doi.org/10.2478/rtuect-2020-0024 Search in Google Scholar

Nussbaumer T., Thalmann S. Influence of system design on heat distribution costs in district heating. Energy 2016:101:496–505. https://doi.org/10.1016/j.energy.2016.02.062 Search in Google Scholar

Masatin V., Latõšev E., Volkova A. Evaluation Factor for District Heating Network Heat Loss with Respect to Network Geometry. Energy Procedia 2016:95:279–285. https://doi.org/10.1016/j.egypro.2016.09.069 Search in Google Scholar

Andersen M., Bales C., Dalenbäck J. O. Heat distribution concepts for small solar district heating systems – Techno-economic study for low line heat densities. Energy Conversion and Management: X 2022:15:100243. https://doi.org/10.1016/j.ecmx.2022.100243 Search in Google Scholar

Kumar L., Ahmed J., El Haj Assad M., Hasanuzzaman M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies 2022:15(22):8501. https://doi.org/10.3390/en15228501 Search in Google Scholar

HeatRoadmapEurope. Heating and Cooling – facts and figures. Heat Roadmap Europe, 2017. Search in Google Scholar

Miró L., Gasia J., Cabeza L. F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy 2016:179:284–301. https://doi.org/10.1016/j.apenergy.2016.06.147 Search in Google Scholar

Shehadeh M., Kwok E., Owen J., Bahrami M. Integrating mobile thermal energy storage (M-tes) in the city of surrey’s district energy network: A techno-economic analysis. Applied Sciences (Switzerland) 2021:11(3):1–12. https://doi.org/10.3390/app11031279 Search in Google Scholar

Du K., Calautit J., Eames P., Wu Y. A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renewable Energy 2021:168:1040–1057. https://doi.org/10.1016/j.renene.2020.12.057 Search in Google Scholar

Li H., Wang W., Yan J., Dahlquist E. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Applied Energy 2013:104:178–186. https://doi.org/10.1016/j.apenergy.2012.11.010 Search in Google Scholar

Deckert M., Scholz R., Binder S., Hornung A. Economic efficiency of mobile latent heat storages. Energy Procedia 2014:46:171–177. https://doi.org/10.1016/j.egypro.2014.01.170 Search in Google Scholar

Guo S., Liu Q., Zhao J., Jin G., Wu W., Yan J., Li H., Jin H. Mobilized thermal energy storage: Materials, containers and economic evaluation. Energy Conversion and Management 2018:177:315–329. https://doi.org/10.1016/j.enconman.2018.09.070 Search in Google Scholar

Yang J., Zhang Z., Chen J., Hong M., Li H., Li Y., Yang M. Investigating the economic returns of mobile heat storage devices in the multi-stage closed-loop supply chain. Energy Reports 2020:6:181–189. https://doi.org/10.1016/j.egyr.2020.06.023 Search in Google Scholar

Fritz M., Plötz P., Schebek L. A technical and economical comparison of excess heat transport technologies. Renewable and Sustainable Energy Reviews 2022:168:112889. https://doi.org/10.1016/j.rser.2022.112899 Search in Google Scholar

Guo S., Zhao J., Bertrand A., Yan J. Mobilized thermal energy storage for clean heating in carbon neutrality era: A perspective on policies in China. Energy and Buildings 2022:277:112537. https://doi.org/10.1016/j.enbuild.2022.112537 Search in Google Scholar

Fujii S., Nakagaki T., Kanematsu Y., Kikuchi Y. Prospective life cycle assessment for designing mobile thermal energy storage system utilizing zeolite. Journal of Cleaner Production 2022:365:132592. https://doi.org/10.1016/j.jclepro.2022.132592 Search in Google Scholar

Krönauer A., Lävemann E., Brückner S., Hauer A. Mobile sorption heat storage in industrial waste heat recovery. Energy Procedia 2015:73:272–280. https://doi.org/10.1016/j.egypro.2015.07.688 Search in Google Scholar

Hauer A., Krönauer A., Lävemann E. Wärmetransport mit Lastkraftwagen. (Heat transport by truck). 2019:1–21. [Online]. [Accessed: 12.03.2023]. Available: https://docplayer.org/126531665-Waermetransport-mitlastkraftwagen.html (In German). Search in Google Scholar

Verein Deutscher Ingenieure. VDI 2067 – Economic efficiency of building installations 2012:44. Search in Google Scholar

Statistics_Austria. Customer Price Indices 1990 - 2022 in Austria 2023. [Online]. [Accessed: 20.03.2023]. Available: https://www.statistik.at/fileadmin/pages/214/CPI.pdf Search in Google Scholar

Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069 Search in Google Scholar

Lizana J, Chacartegui R, Barrios-Padura A, Valverde JM. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy 2017:203:219–239. https://doi.org/10.1016/j.apenergy.2017.06.008 Search in Google Scholar

Martin H, editor. VDI-Wärmeatlas. 10th ed. Berlin: Springer-Verlag, 2005. Search in Google Scholar

NILS. Technical datasheet Calor 32 - Spezialöl für Wärmeübertragungsanlagen. 2015. [Online]. [Accessed: 21.01.2015]. https://www.nils.eu/de/prodotti/calor/ Search in Google Scholar

Baehr H. D., Stephan K. Wärme- und Stoffübertragung. 5th ed. Berlin: Springer-Verlag, 2006. Search in Google Scholar

Link S., Plötz P., Griener J., Moll C. Lieferverkehr mit Batterie-Lkw: Machbarkeit 2021 Fallbeispiel REWE Group– Region Nordost. Karlsruhe: 2021. (Delivery traffic with battery trucks: Feasibility 2021 case study REWE Group – Northeast region. Karlsruhe: 2021). (In German). Search in Google Scholar

Schwendinger M. Durch emissionsfreie Lkw Klimabilanz verbessern. (Improve the climate balance through emission-free trucks). Fact Sheet 2021:04:8. (In German). [Online]. [Accessed: 25.11.2022]. https://vcoe.at/files/vcoe/uploads/News/VCOe-Factsheets/2021/2021-03%20Emissionsfreie%20Lkw/VC%C3%96-Factsheet%202021-03%20Durch%20emissionsfreie%20Lkw%20Klimabilanz%20verbessern.pdf Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other