Cite

[1] Koul B., Sharma K., Shah M. P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology and Innovation 2022:25:102040. https://doi.org/10.1016/j.eti.2021.102040 10.1016/j.eti.2021.102040 Search in Google Scholar

[2] Rude K., Yothers C., Barzee T. J., Kutney S., Zhang R., Franz A. Growth potential of microalgae on ammonia-rich anaerobic digester effluent for wastewater remediation. Algal Research 2022:62:102613. https://doi.org/10.1016/j.algal.2021.102613 10.1016/j.algal.2021.102613 Search in Google Scholar

[3] Mu R., Jia Y., Ma G., Liu L., Hao K., Qi F., Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. Water Environment Research 2021:93(8):1217–1230. https://doi.org//10.1002/wer.1496 10.1002/wer.149633305497 Search in Google Scholar

[4] Mantovani M., Marazzi F., Fornaroli R., Bellucci M., Ficara E., Mezzanotte V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Science of the Total Environment 2020:710:135583. https://doi.org/10.1016/j.scitotenv.2019.135583 10.1016/j.scitotenv.2019.13558331785903 Search in Google Scholar

[5] Mezzanotte V., Marazzi, F., Ficara, E., Mantovani, M., Valsecchi, S., Cappelli, F. First results on the removal of emerging micropollutants from municipal centrate by microalgae. Environmental and Climate Technologies 2022:26(1):36–45. https://doi.org/10.2478/rtuect-2022-0004 10.2478/rtuect-2022-0004 Search in Google Scholar

[6] Liu R., Li S., Tu Y., Hao X., Qiu F. Recovery of value-added products by mining microalgae. Journal of Environmental Management 2022:307:114512. https://doi.org/10.1016/j.jenvman.2022.114512 10.1016/j.jenvman.2022.11451235066198 Search in Google Scholar

[7] Choi H. I., Sung Y. J., Hong M. E., Han J., Min B. K., Sim S. J. Reconsidering the potential of direct microalgal biomass utilization as end-products: A review. Renewable and Sustainable Energy Reviews 2022:155:111930. https://doi.org/10.1016/j.rser.2021.111930 10.1016/j.rser.2021.111930 Search in Google Scholar

[8] Antonelli M., Benzoni S., Bergna G., Bernardi M., Bertanza G., Cantoni B., Delli Compagni R., Gugliandolo M.C., Malpei F., Mezzanotte V., Pannuzzo B., Porro E. Contaminazione e rimozione di microinquinanti emergenti in acque reflue e in acque destinate al consumo umano. (Contamination and removal of emerging micropollutants in wastewater and water intended for human consumption). In: Tartari G., Bergna G., Lietti M., Rizzo A., Lazzari F. e Brioschi C. GdL-MIE. Inquinanti Emergenti. Lombardy Energy Cleantech Cluster: Milano, 2020. (In Italian). Search in Google Scholar

[9] Gusmaroli L., Mendoza E., Petrovic M., Buttiglieri G. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? Science of the Total Environment 2020:714:136773. https://doi.org//10.1016/j.scitotenv.2020.136773 10.1016/j.scitotenv.2020.13677332018966 Search in Google Scholar

[10] Rizzo L., Malato S., Antakyali D., Beretsou V. G., Đolić M. B., Gernjak W., Heath E., Ivancev-Tumbas I., Karaolia P., Ribeiro A. R. L., Mascolo G., McArdell C. S., Schaar H., Silva A. M. T., Fatta-Kassinos D. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment 2019:655:986–1008. https://doi.org//10.1016/j.scitotenv.2018.11.265 10.1016/j.scitotenv.2018.11.26530577146 Search in Google Scholar

[11] Crane R. A., Scott T. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles. Journal of Nanoparticle Research 2014:16:2813. https://doi.org/10.1007/s11051-014-2813-4 10.1007/s11051-014-2813-4427436425544828 Search in Google Scholar

[12] Hoch L. B., Mack E. J., Hydutsky B. W., Hershman J. M., Skluzacek J. M., Mallouk T. E. C]arbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology 2008:42(7):2600–2605. https://doi.org/10.1021/es702589u 10.1021/es702589u18505003 Search in Google Scholar

[13] Sunkara B., Zhan J., He J., McPherson G. L., Piringer G., John, V. T. Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials and Interfaces 2010:2(10):2854–2862. https://doi.org/10.1021/am1005282 10.1021/am1005282 Search in Google Scholar

[14] Qiu G., Wu Y., Qi L., Chen C., Bao L., Qiu M. Study on the Degradation of Azo Dye Wastewater by Zero-valent Iron. Nature Environment and Pollution Technology 2018:17(2):479–483. Search in Google Scholar

[15] Bonaiti S., Calderon B., Collina E., Lasagni M., Mezzanotte V., Saez N. A., Fullana A. Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal. IOP Conference Series: Earth and Environmental Science 14–16 April 2017, 2017:64(1):012070. https://doi.org/10.1088/1755-1315/64/1/012070 10.1088/1755-1315/64/1/012070 Search in Google Scholar

[16] Li Z., Lowry G. V., Fan J., Liu F., Chen J. High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite. Science of the Total Environment 2018:628–629:177–185. https://doi.org/10.1016/j.scitotenv.2018.02.038 10.1016/j.scitotenv.2018.02.03829432929 Search in Google Scholar

[17] Ambika S., Devasena M., Nambi I. M. Single-step removal of Hexavalent chromium and phenol using meso zerovalent iron. Chemosphere 2020:248:125912. https://doi.org/10.1016/j.chemosphere.2020.125912 10.1016/j.chemosphere.2020.12591232006826 Search in Google Scholar

[18] Arvaniti O. S., Hwang Y., Andersen H. R., Stasinakis A. S., Thomaidis N. S., Aloupi M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chemical Engineering Journal 2015:262:133–139. https://doi.org/10.1016/j.cej.2014.09.079 10.1016/j.cej.2014.09.079 Search in Google Scholar

[19] Sevilla M., Fuertes A. B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009:47(9):2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026 10.1016/j.carbon.2009.04.026 Search in Google Scholar

[20] Mantovani M., Collina E., Lasagni M., Marazzi F., Mezzanotte V. Production of microalgal-based carbon encapsulated iron nanoparticles (ME-nFe) to remove heavy metals in wastewater. Environmental Science and Pollution Research 2022. https://doi.org/10.1007/s11356-022-22506-x 10.1007/s11356-022-22506-x36008581 Search in Google Scholar

[21] Tua C., Ficara E., Mezzanotte V., Rigamonti L. Integration of a side-stream microalgae process into a municipal wastewater treatment plant: A life cycle analysis. Journal of Environmental Management 2021:279:111605. https://doi.org/10.1016/j.jenvman.2020.111605 10.1016/j.jenvman.2020.11160533168296 Search in Google Scholar

[22] International Organization for Standardization, 2006a. Environmental Management. Life Cycle Assessment: Principles and Framework. ISO 14040. Search in Google Scholar

[23] International Organization for Standardization, 2006b. Environmental management. Life cycle assessment: Requirements and Guidelines. ISO 14044. Search in Google Scholar

[24] Zampori L., Pant R. Suggestions for updating the Product Environmental Footprint (PEF) method, EUR 29682 EN, Publications Office of the European Union, Luxembourg, 2019. https://doi.org/10.2760/424613 Search in Google Scholar

[25] Lucchetti M. G., Paolotti L., Rocchi L., Boggia A. The Role of Environmental Evaluation within Circular Economy: An Application of Life Cycle Assessment (LCA) Method in the Detergents Sector. Environmental and Climate Technologies 2019:23(2):238–257. https://doi.org/10.2478/rtuect-2019-0066 10.2478/rtuect-2019-0066 Search in Google Scholar

[26] Diaz F., Vignati J. A., Marchi B., Paoli R., Zanoni S., Romagnoli F. Effects of Energy Efficiency Measures in the Beef Cold Chain: A Life Cycle-based Study. Environmental and Climate Technologies 2021:25(1):343–355. https://doi.org/10.2478/rtuect-2021-0025 10.2478/rtuect-2021-0025 Search in Google Scholar

[27] Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G., Rosenbaum R. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 2003:8:324–330. https://doi.org/10.1007/BF02978505 10.1007/BF02978505 Search in Google Scholar

[28] Wernet G., Bauer C., Steubing B., Reinhard J., Moreno-Ruiz E., Weidema B. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment 2016:21(9):1218–1230. https://doi.org/10.1007/s11367-016-1087-8 10.1007/s11367-016-1087-8 Search in Google Scholar

[29] European Commission. Joint Research Centre. Institute for Environment and Sustainability. Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. EUR 25167. Publications Office of the European Union, 2012. Search in Google Scholar

[30] European Commission, Joint Research Centre. Schau E., Castellani V., Fazio S., et al. Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods: new methods and differences with ILCD. Publications Office, 2018. https://data.europa.eu/doi/10.2760/671368 Search in Google Scholar

[31] World Meteorological Organization, Global Ozone Research and Monitoring Project. Report No. 44. Scientific Assessment of Ozone Depletion: 1998. 1999. Search in Google Scholar

[32] Fantke P., Bijster M., Guignard C., Hauschild M., Huijbregts M., Jolliet O., Kounina A., Magaud V., Margni M., McKone T. E., Posthuma L., Rosenbaum R. K., van de Meent D., van Zelm R. USEtox® 2.0 Documentation (Version 1). 2017. [Online]. [Accessed: 15.06.2022]. Available: http://usetox.org Search in Google Scholar

[33] Henderson A. D., Hauschild M. Z., Van de Meent D., Huijbregts M. A. J., Larsen H. F., Margni M., McKone T. E., Payet J., Rosenbaum R. K., Jolliet O. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. The International Journal of Life Cycle Assessment 2011:16:701–709. https://doi.org/10.1007/s11367-011-0294-6 10.1007/s11367-011-0294-6 Search in Google Scholar

[34] Milà I Canals L., Bauer C., Depestele J., Dubreuil A., Knuchel R. F., Gaillard G., Michelsen O., Müller-Wenk R., Rydgren B. Key elements in a framework for land use impact assessment within LCA. The International Journal of Life Cycle Assessment 2007:12(1):5–15. https://doi.org/10.1065/lca2006.05.250 10.1065/lca2006.05.250 Search in Google Scholar

[35] Frischknecht R., Steiner N., Jungbluth N. The Ecological Scarcity Method – Eco-Factors 2006. A method for impact assessment in LCA. Environmental studies no. 0906. Federal Office for the Environment. Bern, 2009. Search in Google Scholar

[36] Schneider L., Berger M., Finkbeiner M. Abiotic resource depletion in LCA: background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. The International Journal of Life Cycle Assessment 2015:20:709–721. https://doi.org/10.1007/s11367-015-0864-0 10.1007/s11367-015-0864-0 Search in Google Scholar

[37] Jolliet O., Brent A., Goedkoop M., Itsubo N., Mueller-Wenk R., Peña C., Schenk R., Stewart M., Weidema B. LCIA Definition Study of the SETAC-UNEP Life Cycle Initiative. UNEP. 2003. [Online]. [Accessed: 14.06.2022]. Available: https://lca-net.com/files/LCIA_defStudy_final3c.pdf Search in Google Scholar

[38] Collet P., Hélias A., Lardon L., Ras M., Goy R., Steyer J. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology 2011:102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154 10.1016/j.biortech.2010.06.15420674343 Search in Google Scholar

[39] Arashiro L. T., Montero N., Ferrer I., Aci´en F. G., Gomez C., Garfì M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Science of the Total Environment 2018:622–623:1118–1130. https://doi.org/10.1016/j.scitotenv.2017.12.051 10.1016/j.scitotenv.2017.12.05129890581 Search in Google Scholar

[40] Roy P., Dutta A., Gallant J. Hydrothermal carbonization of peat moss and herbaceous biomass (miscanthus): A potential route for bioenergy. Energies 2018:11(10):2794. https://doi.org/10.3390/en11102794 10.3390/en11102794 Search in Google Scholar

[41] Mendoza J. L., Granados M. R., de Godos I., Acién F. G., Molina E., Banks C., Heaven S. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioenergy 2013:54:267–275. https://doi.org/10.1016/j.biombioe.2013.03.017 10.1016/j.biombioe.2013.03.017 Search in Google Scholar

[42] Matamoros V., Gutiérrez R., Ferrer I., García J., Bayona J. M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. Journal of Hazardous Materials 2015:288:34–42. https://doi.org/10.1016/j.jhazmat.2015.02.002 10.1016/j.jhazmat.2015.02.00225682515 Search in Google Scholar

[43] Mantovani M., Collina E., Marazzi F., Lasagni M., Mezzanotte V. Microalgal treatment of the effluent from the hydrothermal carbonization of microalgal biomass. Journal of Water Process Engineering 2022:49:102976. https://doi.org/10.1016/j.jwpe.2022.102976 10.1016/j.jwpe.2022.102976 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other