Cite

[1] UNFCCC. The Paris Agreement [Online]. [Accessed 30.05.2021]. Available: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement Search in Google Scholar

[2] EU Commission. The European Green New Deal Annex. J. Chem. Inf. Model. 2013:53(9):1689–1699.10.1021/ci400128m23800267 Search in Google Scholar

[3] Fischer-Kowalski M., et al. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth. Paris: UNEP DTIE, 2011. Search in Google Scholar

[4] Sanyé-Mengual E., et al. Assessing the decoupling of economic growth from environmental impacts in the European Union: A consumption-based approach. J. Clean. Prod. 2019:236:117535. https://doi.org/10.1016/j.jclepro.2019.07.01010.1016/j.jclepro.2019.07.010673799231680729 Search in Google Scholar

[5] Bocken N. M., Ritala P., Huotari P. The Circular Economy Exploring the Introduction of the Concept Among. J. Ind. Ecol. 2017:21(3):487–490. https://doi.org/10.1111/jiec.1260510.1111/jiec.12605 Search in Google Scholar

[6] D’Amato D., Veijonaho S., Toppinen A. Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. For. Policy Econ. 2020:110:101848. https://doi.org/10.1016/j.forpol.2018.12.00410.1016/j.forpol.2018.12.004 Search in Google Scholar

[7] Zihare L., et al. Triple factor nexus in bioeconomy through indicator analysis. N. Biotechnol. 2020:61:57–68. https://doi.org/10.1016/j.nbt.2020.11.00810.1016/j.nbt.2020.11.00833220518 Search in Google Scholar

[8] Olubunmi O. A., Xia P. B., Skitmore M. Green building incentives: A review. Renew. Sustain. Energy Rev. 2016:59:1611–1621. https://doi.org/10.1016/j.rser.2016.01.02810.1016/j.rser.2016.01.028 Search in Google Scholar

[9] Jayalath A., et al. Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy Build. 2020:223:110091. https://doi.org/10.1016/j.enbuild.2020.11009110.1016/j.enbuild.2020.110091 Search in Google Scholar

[10] Hildebrandt J., Hagemann N., Thrän D. The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustain. Cities Soc. 2017:34:405–418. https://doi.org/10.1016/j.scs.2017.06.01310.1016/j.scs.2017.06.013 Search in Google Scholar

[11] Suzanne E., Absi N., Borodin V. Towards circular economy in production planning: Challenges and opportunities. Eur. J. Oper. Res. 2020:287(1):168–190. https://doi.org/10.1016/j.ejor.2020.04.04310.1016/j.ejor.2020.04.043 Search in Google Scholar

[12] Kalverkamp M., Pehlken A., Wuest T. Cascade use and the management of product lifecycles. Sustain. 2017:9(9):1540. https://doi.org/10.3390/su909154010.3390/su9091540 Search in Google Scholar

[13] Golev A., Corder G. D., Giurco D. P. Barriers to Industrial Symbiosis Insights from the Use of a Maturity Grid. Journal of Industrial Ecology 2014:19(1):141–154. https://doi.org/10.1111/jiec.1215910.1111/jiec.12159 Search in Google Scholar

[14] Alinejad M., et al. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers (Basel) 2019:11(7):1202. https://doi.org/10.3390/polym1107120210.3390/polym11071202668096131323816 Search in Google Scholar

[15] Magalhães de Souza A., et al. Performance Assessment of OSB Wood Composites with Added Wire Mesh. Int. J. Mater. Eng. 2014:4(3):88–91.10.5923/j.ijme.20140403.03 Search in Google Scholar

[16] Hemmila V., et al. Development of sustainable bio-adhesives for engineered wood panels – A Review. R. Soc. Chem. 2017:7:38604–38630. https://doi.org/10.1039/c7ra06598a10.1039/C7RA06598A Search in Google Scholar

[17] Brandner R., et al. Cross laminated timber (CLT): overview and development. Eur. J. Wood & Wood Prod. 2016:74(3):331–351. https://doi.org/10.1007/s00107-015-0999-510.1007/s00107-015-0999-5 Search in Google Scholar

[18] Vamza I., et al. Life Cycle Assessment of Reprocessed Cross Laminated Timber in Latvia. Environ. Clim. Technol. 2021:25(1):58–70. https://doi.org/10.2478/rtuect-2021-000510.2478/rtuect-2021-0005 Search in Google Scholar

[19] Chaudhary A., Messer A. Life cycle assessment of adhesives used in wood constructions Life cycle assessment (LCA) of adhesives used in wood constructions. Zurich: ETH, 2015. Search in Google Scholar

[20] Masi D., et al. Towards a more circular economy: exploring the awareness, practices, and barriers from a focal firm perspective. Prod. Plan. Control 2018:29(6):539–550. https://doi.org/10.1080/09537287.2018.144924610.1080/09537287.2018.1449246 Search in Google Scholar

[21] Homrich A. S., et al. The circular economy umbrella: Trends and gaps on integrating pathways. J. Clean. Prod. 2018:175:525–543. https://doi.org/10.1016/j.jclepro.2017.11.06410.1016/j.jclepro.2017.11.064 Search in Google Scholar

[22] Popescu C. M. Wood as bio-based building material. 2017. Search in Google Scholar

[23] Teixeira D. E., et al. Adhesivity of bio-based anhydrous citric acid, tannin-citric acid and ricinoleic acid in the properties of formaldehyde-free medium density particleboard (Mdp). Drv. Ind. 2020:71(3):235–242. https://doi.org/10.5552/drvind.2020.191710.5552/drvind.2020.1917 Search in Google Scholar

[24] Iždinský J., Vidholdová Z., Reinprecht L. Particleboards from recycled wood. Forests 2020:11(11):1166. https://doi.org/10.3390/f1111116610.3390/f11111166 Search in Google Scholar

[25] Yang T. H., et al. Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Build. Environ. 2007:42(1):189–195. https://doi.org/10.1016/j.buildenv.2005.08.02810.1016/j.buildenv.2005.08.028 Search in Google Scholar

[26] Mirski R., et al. By-products of sawmill industry as raw materials for manufacture of chip-sawdust boards. J. Build. Eng. 2020:32:101460. https://doi.org/10.1016/j.jobe.2020.10146010.1016/j.jobe.2020.101460 Search in Google Scholar

[27] Eurostat. Medium/high density fiberboard production in EU [Online]. [Accessed 3.06.2021]. Available: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do Search in Google Scholar

[28] Wilson J. B. CORRIM: Phase II Final Report. Module G Medium Density Fiberboard (MDF): A Life-Cycle Inventory of Manufacturing Panels from Resource through Product. 2008. Search in Google Scholar

[29] Irle M., Thoemen H., Sernek M. Wood-based panel technology: An introduction for Specialists. London: Brunel University Press, 2010. Search in Google Scholar

[30] Wilson J. B., Sakimoto E. T. Gate-to-gate life-cycle inventory of softwood plywood production. Wood Fiber Sci. 2005:37:58–73. Search in Google Scholar

[31] Korjakins A., et al. Application of Peat, Wood Processing and Agricultural Industry By-products in Producing the Insulating Building Materials. J. Sustain. Archit. Civ. Eng. 2013:1(2):62–68. https://doi.org/10.5755/j01.sace.1.2.288410.5755/j01.sace.1.2.2884 Search in Google Scholar

[32] Gul W., Khan A., Shakoor A. Impact of hot pressing temperature on Medium Density Fiberboard (MDF) performance. Adv. Mater. Sci. Eng. 2017:2017:4056360. https://doi.org/10.1155/2017/405636010.1155/2017/4056360 Search in Google Scholar

[33] Bruin S. Mycelium: A Building Block for Parkstad Limburg. Delft: Delft University of Technology, 2008. Search in Google Scholar

[34] Grossi P., et al. Analysis of timber log-house construction system via experimental testing and analytical modelling. Constr. Build. Mater. 2016:102:1127–1144. https://doi.org/10.1016/j.conbuildmat.2015.10.06710.1016/j.conbuildmat.2015.10.067 Search in Google Scholar

[35] Epd-Norge.No. Cross laminated timber panels. Oslo: Epd-Norge, 2017. Search in Google Scholar

[36] Ahmed M., et al. Production of Lightweight Bricks Using Saw Dust. Sch. J. Eng. Technol. 2020:8(7):132–140. https://doi.org/10.36347/sjet.2020.v08i07.00310.36347/sjet.2020.v08i07.003 Search in Google Scholar

[37] Gurtu A., Searcy C., Jaber M. Y. Emissions from international transport in global supply chains. Manag. Res. Rev. 2017:40(1):53–74. https://doi.org/10.1108/MRR-09-2015-020810.1108/MRR-09-2015-0208 Search in Google Scholar

[38] Bahri M. A. S., Ratnam M. M., Khalil H. A. Functionally graded wood filler–recycled polypropylene composite: Effect of mechanical loading on deflection of cantilever beam. Adv. Compos. Lett. 2020:29: 2633366X2092285. https://doi.org/10.1177/2633366X2092285610.1177/2633366X20922856 Search in Google Scholar

[39] Luttropp C., Lagerstedt J. EcoDesign and The Ten Golden Rules: generic advice for merging environmental aspects into product development. J. Clean. Prod. 2006:14(15–16):1396–1408. https://doi.org/10.1016/j.jclepro.2005.11.02210.1016/j.jclepro.2005.11.022 Search in Google Scholar

[40] Trømborg E., et al. Economic sustainability for wood pellets production - Acomparative study between Finland, Germany, Norway, Sweden and the US. Biomass and Bioenergy 2013:57:68–77. https://doi.org/10.1016/j.biombioe.2013.01.03010.1016/j.biombioe.2013.01.030 Search in Google Scholar

[41] Wang C., et al. A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat. Energy 2016:120:374–384. https://doi.org/10.1016/j.energy.2016.11.08510.1016/j.energy.2016.11.085 Search in Google Scholar

[42] Group A. M. R. Biomass Markets: Weekly biomass markets news and analysis. 2022. [Online]. [Accessed 23.03.2021]. Available: https://www.argusmedia.com/-/media/Files/sample-reports/argus-biomass-markets.ashx?la=en&hash=872E2C03A0A78FE3F236BBF00E7729E3114326E0 Search in Google Scholar

[43] Rivela B., et al. Life Cycle Inventory of Particleboard: A Case Study in the Wood Sector. J. LCA 2006:11(2):106–113. https://doi.org/10.1065/lca2005.05.20610.1065/lca2005.05.206 Search in Google Scholar

[44] Rivela B., Moreira M. T., Feijoo G. Life Cycle Inventory of Medium Density Fibreboard. J. LCA 2007:12(3):143–150. http://dx.doi.org/10.1065/lca2006.12.29010.1065/lca2006.12.290 Search in Google Scholar

[45] Zlaugotne B., et al. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-002810.2478/rtuect-2020-0028 Search in Google Scholar

[46] Siksnelyte I., et al. An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 2018:11(10):2754. https://doi.org/10.3390/en1110275410.3390/en11102754 Search in Google Scholar

[47] Lee S., et al. Using AHP to determine intangible priority factors for technology transfer adoption. Expert Syst. Appl. 2012:39(7):6388–6395. https://doi.org/10.1016/j.eswa.2011.12.03010.1016/j.eswa.2011.12.030 Search in Google Scholar

[48] Ishizaka A., Nemery P. Multi-Criteria Decision Analysis. Methods and software. Wiley, 2013.10.1002/9781118644898 Search in Google Scholar

[49] Pubule J., et al. Finding an optimal solution for biowaste management in the Baltic States. J. Clean. Prod. 2015:88:214–223. https://doi.org/10.1016/j.jclepro.2014.04.05310.1016/j.jclepro.2014.04.053 Search in Google Scholar

[50] Saaty T. L., Sodenkamp M. The Analytic Hierarchy and Analytic Network Measurement Processes: The Measurement of Intangibles: Decision Making under Benefits, Opportunities, Costs and Risks. In Zopounidis C., Pardalos P. (eds) Handbook of Multicriteria Analysis. Applied Optimization 2010:103:91–166. https://doi.org/10.1007/978-3-540-92828-7_410.1007/978-3-540-92828-7_4 Search in Google Scholar

[51] Delvere I., et al. Evaluation of polymer matrix composite waste recycling methods. Environ. Clim. Technol. 2019:23(1):168–187. https://doi.org/10.2478/rtuect-2019-001210.2478/rtuect-2019-0012 Search in Google Scholar

[52] Li P., et al. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013:185(3):2453–2461. https://doi.org/10.1007/s10661-012-2723-910.1007/s10661-012-2723-922752962 Search in Google Scholar

[53] Jones M., et al. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020:187:108397. https://doi.org/10.1016/j.matdes.2019.10839710.1016/j.matdes.2019.108397 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other