Open Access

Assessment of Different Binders for Activated Carbon Granulation for the Use in CO2 Adsorption


Cite

[1] European Commission. Climate change consequences [Online]. [Accessed 18.03.2021]. Available: https://ec.europa.eu/clima/climate-change/climate-change-consequences_en Search in Google Scholar

[2] Uzdevumi.lv. Oxygen [Online]. [Accessed 05.04.2020]. Available: https://www.uzdevumi.lv/p/dabaszinibas/5-klase/tiras-vielas-un-maisijumi-5877/re-5fe5692b-9740-4ee6-8aba-277692b2712e (in Latvian) Search in Google Scholar

[3] Nathanson J. A. Air pollution. Encyclopedia Britannica, 2020. Search in Google Scholar

[4] United States Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks [Online]. [Accessed 15.03.2021]. Available: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks Search in Google Scholar

[5] Heinrici C., Company D. Sorbents for Air and Gas Purification. Technical Article Program (TAP). Search in Google Scholar

[6] Vegere K., et al. Alkali-activated metakaolin as a zeolite-like binder for the production of adsorbents. Inorganics 2019:7(12):141. https://doi.org/10.3390/inorganics712014110.3390/inorganics7120141 Search in Google Scholar

[7] Adsorption, Absorption and Desorption — What’s the Difference? [Online]. [Accessed 16.03.2021]. Available: https://www.chromatographytoday.com/news/hplc-uhplc/31/breaking-news/adsorption-absorption-and-desorptionmdash-whatrsquos-the-difference/31397 Search in Google Scholar

[8] Chiang Y. C., Yeh C. Y., Weng C. H. Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl. Sci. 2019:9(10):1977. https://doi.org/10.3390/app910197710.3390/app9101977 Search in Google Scholar

[9] Chen L., et al. Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range. Adsorpt. Sci. Technol. 2018:36(1-2):625–639. https://doi.org/10.1177/026361741771357310.1177/0263617417713573 Search in Google Scholar

[10] Yang R. T. Adsorbents: Fundamentals and Applications. Hoboken: John Wiley & Sons, Inc, 2003, Search in Google Scholar

[11] Ruthven D. M. Principles of Adsorption and Adsorption Processes. Hoboken: John Wiley & Sons, Inc., 1984. Search in Google Scholar

[12] Hung Y., et al. Granular Activated Carbon Adsorption. In Wang L.K., Hung YT., Shammas N.K. (eds) Physicochemical Treatment Processes. Handbook of Environmental Engineering, Humana Press, 2005:3:573–633. https://doi.org/10.1385/1-59259-820-x:57310.1385/1-59259-820-x:573 Search in Google Scholar

[13] Menéndez-Díaz J. A., Martín-Gullón I. Chapter 1: Types of carbon adsorbents and their production. Interface Science and Technology 2006:7:1–47, https://doi.org/10.1016/S1573-4285(06)80010-410.1016/S1573-4285(06)80010-4 Search in Google Scholar

[14] Chowdhury Z. Z., et al. Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 2013:8(4):6523–6555. https://doi.org/10.15376/biores.8.4.6523-655510.15376/biores.8.4.6523-6555 Search in Google Scholar

[15] Crittenden B., Thomas W. J. Adsorption Technology and Design. Burlington: Butterworth-Heinemann, 1998. Search in Google Scholar

[16] Melouki R., Ouadah A., Llewellyn P. L. The CO2 adsorption behavior study on activated carbon synthesized from olive waste. J. CO2 Util. 2020:42:101292. https://doi.org/10.1016/j.jcou.2020.10129210.1016/j.jcou.2020.101292 Search in Google Scholar

[17] Buvaneswari K., Singanan M. Review on scanning electron microscope analysis and adsorption properties of different activated carbon materials. Mater. Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.09.426 (in Press)10.1016/j.matpr.2020.09.426 Search in Google Scholar

[18] Sarwar A., et al. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption. J. CO2 Util. 2021:46:101476. https://doi.org/10.1016/j.jcou.2021.10147610.1016/j.jcou.2021.101476 Search in Google Scholar

[19] Volperts A., et al. Biomass based activated carbons for fuel cells. Renew. Energy 2019:141:40–45. https://doi.org/10.1016/j.renene.2019.04.00210.1016/j.renene.2019.04.002 Search in Google Scholar

[20] Dec Impianti. Activated carbon [Online]. [Accessed 18.03.2021]. Available: https://www.decimpianti.com/processes/activated-carbon_en.html Search in Google Scholar

[21] Mieville R. L., Robinson K. K. Carbon molecular sieves and other porous carbons. Mega-Carbon Co., 2000. Search in Google Scholar

[22] Shanmugam S. Granulation techniques and technologies: recent progresses. BioImpacts 2015:5:55–63. https://doi.org/10.15171/bi.2015.0410.15171/bi.2015.04 Search in Google Scholar

[23] Argalis P. P., et al. Suitability Assessment for the Application of Adsorption. Crystals 2021:11(4):360. https://doi.org/10.3390/cryst1104036010.3390/cryst11040360 Search in Google Scholar

[24] Fink J. K. Reactive Polymers Fundamentals and Applications: A Concise Guide to Industrial Polymers. Elsevier, 2013. https://doi.org/10.1016/C2012-0-02516-110.1016/C2012-0-02516-1 Search in Google Scholar

[25] Ormondroyd G. A. Adhesives for wood composites. Elsevier, 2015.10.1016/B978-1-78242-454-3.00003-2 Search in Google Scholar

[26] Brunauer S., Emmett P. H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938:60(2):309–319. https://doi.org/10.1021/ja01269a02310.1021/ja01269a023 Search in Google Scholar

[27] Brame J. A., Griggs C. Surface Area Analysis Using the Brunauer-Emmett-Teller (BET) Method: Scientific Operation Procedure Series: SOP-C. Vicksburg: U.S Army Corps of Engineering, 2016. Search in Google Scholar

[28] Joewondo N. Pore structure of Micro- and mesoporous Mudrocks based on nitrogen and carbon dioxide sorption. Golden: Colorado School of Mines, 2018. Search in Google Scholar

[29] Sing K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surfaces A: Physicochem. Eng. Asp. 2001:187–188:3–9. https://doi.org/10.1016/S0927-7757(01)00612-410.1016/S0927-7757(01)00612-4 Search in Google Scholar

[30] Zauls V., Krutohvostovs R. Skenējošā Elektronu Mikroskopija (SEM) (Scanning Electron Microscopy (SEM).). Riga: LU, 2005. (in Latvian) Search in Google Scholar

[31] Thermo Fisher Scientific. Introduction to FTIR spectroscopy [Online]. [Accessed 17.03.2021]. Available: https://www.thermofisher.com/lv/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/ftir-information/ftir-basics.html Search in Google Scholar

[32] Ma M., et al. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chinese J. Chem. Eng. 2020:28:1069–1076. https://doi.org/10.1016/j.cjche.2020.01.01610.1016/j.cjche.2020.01.016 Search in Google Scholar

[33] Deng H., et al. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater. 2010:182(1–3):217–224. https://doi.org/10.1016/j.jhazmat.2010.06.01810.1016/j.jhazmat.2010.06.01820605068 Search in Google Scholar

[34] Zhang Z., et al. Sudden heating of H3PO4-loaded coconut shell in CO2 flow to produce super activated carbon and its application for benzene adsorption. Renew. Energy 2020:153:1091–1099. https://doi.org/10.1016/j.renene.2020.02.05910.1016/j.renene.2020.02.059 Search in Google Scholar

[35] Naderi M. Surface Area: Brunauer-Emmett-Teller (BET). Prog. Filtr. Sep. 2015:585–608. https://doi.org/10.1016/B978-0-12-384746-1.00014-810.1016/B978-0-12-384746-1.00014-8 Search in Google Scholar

[36] Serafin J., et al. Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass and Bioenergy 2021:144:105925. https://doi.org/10.1016/j.biombioe.2020.10592510.1016/j.biombioe.2020.105925 Search in Google Scholar

[37] Pramanik P., et al. High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production. J. CO2 Util. 2021:45:101450. https://doi.org/10.1016/j.jcou.2021.10145010.1016/j.jcou.2021.101450 Search in Google Scholar

[38] Hao W., et al. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013:112:526–532. https://doi.org/10.1016/j.apenergy.2013.02.02810.1016/j.apenergy.2013.02.028 Search in Google Scholar

[39] Castrillon M. C., et al. CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3. Energy and Fuels 2016:30:9596–9604. https://doi.org/10.1021/acs.energyfuels.6b0166710.1021/acs.energyfuels.6b01667 Search in Google Scholar

[40] Wang H., et al. Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO2 capture and conversion. J. Colloid Interface Sci. 2020:578:491–499. https://doi.org/10.1016/j.jcis.2020.05.12510.1016/j.jcis.2020.05.12532535430 Search in Google Scholar

[41] Peredo-Mancilla D., Matei C., Ho B. Comparative study of the CH4/CO2 Adsorption Selectivity of Activated Carbons for Biogas Upgrading. J. Env. Chem. Eng. 2019:7(5):103368. https://doi.org/10.1016/j.jece.2019.10336810.1016/j.jece.2019.103368 Search in Google Scholar

[42] Goetz V., Pupier O., Guillot A. Carbon dioxide-methane mixture adsorption on activated carbon. Adsorption 2006:12:55–63. https://doi.org/10.1007/s10450-006-0138-z10.1007/s10450-006-0138-z Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other