Open Access

The Share of Pollution from Land Sources in PM Levels in the Region of Danish Straits, North and Baltic Seas


Cite

[1] Pope C. A., Bates D. V., Raizenne M. E. Health effects of particulate air pollution: Time for reassessment? Environmental Health Perspectives 1995:103:472–480. https://doi.org/10.1289/ehp.9510347210.1289/ehp.9510347215232697656877 Search in Google Scholar

[2] Czechowski P. O., et al. Preliminary Attempt at the Identification and Financial Estimation of the Negative Health Effects of Urban and Industrial Air Pollution Based on the Agglomeration of Gdańsk. Sustainability 2020:12:42. https://doi.org/10.3390/su1201004210.3390/su12010042 Search in Google Scholar

[3] Priedniece V., et al. Treatment of Particulate Matter Pollution: People’s Attitude and Readiness to Act. Environmental and Climate Technologies 2020:24(2):231–246. https://doi.org/10.2478/rtuect-2020-006910.2478/rtuect-2020-0069 Search in Google Scholar

[4] Bajcinovci B. Environmental and Climate Dilemma: Coal for Heating or Clean Air for Breathing: A Case of Prishtina Environmental and Climate Technologies 2019:23(1):41–51. https://doi.org/10.2478/rtuect-2019-000310.2478/rtuect-2019-0003 Search in Google Scholar

[5] Yang X. L., et al. Associations of long-term exposure to ambient PM2.5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment International 2020:138:105589. https://doi.org/10.1016/j.envint.2020.10558910.1016/j.envint.2020.105589816421132146266 Search in Google Scholar

[6] Tellez-Rojo M. M., et al. Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environmental Research 2020:180:108868. https://doi.org/10.1016/j.envres.2019.10886810.1016/j.envres.2019.10886831711659 Search in Google Scholar

[7] Deniz C., Kilic A., Cıvkaroglu G. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental monitoring and assessment 2010:171:219–228. https://doi.org/10.1007/s10661-009-1273-210.1007/s10661-009-1273-220058072 Search in Google Scholar

[8] Bove M. C., et al. PM10 source apportionment applying PMF and chemical tracer analysis to shipborne measurements in the western Mediterranean. Atmospheric Environment 2016:125:140–151. https://doi.org/10.1016/j.atmosenv.2015.11.00910.1016/j.atmosenv.2015.11.009 Search in Google Scholar

[9] Schembari C., et al. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship. Atmospheric Environment 2014:98:510–518. https://doi.org/10.1016/j.atmosenv.2014.09.01510.1016/j.atmosenv.2014.09.015 Search in Google Scholar

[10] Yau P. S., et al. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 2012:431:299–306. https://doi.org/10.1016/j.scitotenv.2012.03.09210.1016/j.scitotenv.2012.03.09222698572 Search in Google Scholar

[11] Chen D., et al. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Science of The Total Environment 2017:609:776–787. https://doi.org/10.1016/j.scitotenv.2017.07.05110.1016/j.scitotenv.2017.07.05128763674 Search in Google Scholar

[12] Romagnoli P., et al. Particulate PAHs and n-alkanes in the air over Southern and Eastern Mediterranean Sea. Chemosphere 2016:159:516–525. https://doi.org/10.1016/j.chemosphere.2016.06.02410.1016/j.chemosphere.2016.06.02427341155 Search in Google Scholar

[13] Zhu L., et al. Transport pathways and potential sources of PM10 in Beijing. Atmospheric Environment 2011:45(3):594–604. https://doi.org/10.1016/j.atmosenv.2010.10.04010.1016/j.atmosenv.2010.10.040 Search in Google Scholar

[14] Lee S., et al. Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Scientific Reports 2019:9:13040. https://doi.org/10.1038/s41598-019-49691-z10.1038/s41598-019-49691-z673696131506534 Search in Google Scholar

[15] Oh H.-R., et al. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmospheric Environment 2015:109:23–30. https://doi.org/10.1016/j.atmosenv.2015.03.00510.1016/j.atmosenv.2015.03.005 Search in Google Scholar

[16] Gupta M., Mohan M. Assessment of contribution to PM10 concentrations from long range transport of pollutants using WRF/Chem over a subtropical urban airshed. Atmospheric Pollution Research 2013:4(4):405–410. https://doi.org/10.5094/APR.2013.04610.5094/APR.2013.046 Search in Google Scholar

[17] Salvador P., et al. Composition and origin of PM10 in Cape Verde: Characterization of long-range transport episodes. Atmospheric Environment 2016:127:326–339. https://doi.org/10.1016/j.atmosenv.2015.12.05710.1016/j.atmosenv.2015.12.057 Search in Google Scholar

[18] Viana M., et al. Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 2014:90:96–105. https://doi.org/10.1016/j.atmosenv.2014.03.04610.1016/j.atmosenv.2014.03.046 Search in Google Scholar

[19] Rogulski M., Badyda A. Investigation of Low-Cost and Optical Particulate Matter Sensors for Ambient Monitoring. Atmosphere 2020:11(10):1040. https://doi.org/10.3390/atmos1110104010.3390/atmos11101040 Search in Google Scholar

[20] Owczarek T., Rogulski M., Czechowski O. Verification of equivalence with reference method for measurements of PM10 concentrations using low-cost devices. Scientific Journals of The Maritime University of Szczecin 2019:60(132):84–89. https://doi.org/10.17402/375 Search in Google Scholar

[21] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.04310.1016/j.egypro.2018.07.043 Search in Google Scholar

[22] Owczarek T., Rogulski M., Badyda A. Preliminary comparative assessment and elements of equivalence of air pollution measurement results of portable monitoring stations with using stochastic models. E3S Web of Conferences 2018:28:01028. https://doi.org/10.1051/e3sconf/2018280102810.1051/e3sconf/20182801028 Search in Google Scholar

[23] Czechowski O., et al. Preliminary comparative assessment of PM10 hourly measurement results from new monitoring stations type using stochastic and exploratory methodology and models. E3S Web of Conferences 2018:28:01010. https://doi.org/10.1051/e3sconf/2018280101010.1051/e3sconf/20182801010 Search in Google Scholar

[24] Firląg Sz., Rogulski M., Badyda A. The Influence of Marine Traffic on Particulate Matter (PM) Levels in the Region of Danish Straits, North and Baltic Seas. Sustainability 2018:10(11):4231. https://doi.org/10.3390/su1011423110.3390/su10114231 Search in Google Scholar

[25] GPS Visualizer [Online]. [Accessed 15.01.2021]. Available: https://www.gpsvisualizer.com/ Search in Google Scholar

[26] HYSPLIT Trajectory Model [Online]. [Accessed 15.01.2021]. Available: https://www.ready.noaa.gov/index.php Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other