Open Access

Thermal Modelling of the Torrefaction Process Using the Finite Element Method


Cite

[1] Zhi W. J., Wang L. F., Hu X. J. Recent advances in the effects of microwave radiation on brains. Military Medical Research 2017:4(1):29. https://doi.org/10.1186/s40779-017-0139-010.1186/s40779-017-0139-0560757229502514 Search in Google Scholar

[2] Huang Y. F., et al. Microwave torrefaction of sewage sludge and Leucaena. Journal of the Taiwan Institute of Chemical Engineers 2017:70:236–243. https://doi.org/10.1016/j.jtice.2016.10.05610.1016/j.jtice.2016.10.056 Search in Google Scholar

[3] Huang Y. F., et al. Co-torrefaction of sewage sludge and leucaena by using microwave heating. Energy 2016:116:1–7. https://doi.org/10.1016/j.energy.2016.09.10210.1016/j.energy.2016.09.102 Search in Google Scholar

[4] Yu K. L., et al. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 2020:279:118435. https://doi.org/10.1016/j.fuel.2020.11843510.1016/j.fuel.2020.118435 Search in Google Scholar

[5] Siritheerasas P., et al. Torrefaction of Municipal Solid Waste (MSW) Pellets using Microwave Irradiation with the Assistance of the Char of Agricultural Residues. Energy Procedia 2017:138:668–673. https://doi.org/10.1016/j.egypro.2017.10.19010.1016/j.egypro.2017.10.190 Search in Google Scholar

[6] Wang M. J., et al. Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 2012:37(1):177–184. https://doi.org/10.1016/j.energy.2011.11.05310.1016/j.energy.2011.11.053 Search in Google Scholar

[7] Satpathy S. K., et al. Torrefaction of wheat and barley straw after microwave heating. Fuel 2014:124:269–278. https://doi.org/10.1016/j.fuel.2014.01.10210.1016/j.fuel.2014.01.102 Search in Google Scholar

[8] Yek P. N. Y., et al. Microwave wet torrefaction: A catalytic process to convert waste palm shell into porous biochar. Materials Science for Energy Technologies 2020:3:742–747. https://doi.org/10.1016/j.mset.2020.08.00410.1016/j.mset.2020.08.004 Search in Google Scholar

[9] Negi S., et al. Torrefaction: a sustainable method for transforming of agri-wastes to high energy density solids (biocoal). Reviews in Environmental Science and Biotechnology 2020:19:463–488. https://doi.org/10.1007/s11157-020-09532-210.1007/s11157-020-09532-2 Search in Google Scholar

[10] Dhaundiyal A., et al. Comprehensive analysis of pre-treated Austrian pine. Fuel 2021:287:119605. https://doi.org/10.1016/j.fuel.2020.11960510.1016/j.fuel.2020.119605 Search in Google Scholar

[11] Dhaundiyal A., Singh S. B., Toth L. Experimental investigation of a small-scale reactor with processed bio-fuel pellets. Biofuels, Bioproducts and Biorefining 2021:15(5):1496–1519. https://doi.org/10.1002/bbb.225610.1002/bbb.2256 Search in Google Scholar

[12] Dhaundiyal A., et al. Development of a Small-scale Reactor for Upgraded Biofuel Pellets. Renewable Energy 2021:170:1197–1214 https://doi.org/10.1016/j.renene.2021.02.05710.1016/j.renene.2021.02.057 Search in Google Scholar

[13] Dhaundiyal A., Bercesi G., Backsai I. The effect of torrefaction on the thermo-kinetics of thermally processed black pine. The Canadian Journal of Chemical Engineering 2020:99(10):2241–2256. https://doi.org/10.1002/cjce.23933.10.1002/cjce.23933 Search in Google Scholar

[14] Dhungana A., Basu P., Dutta A. Effects of Reactor Design on the Torrefaction of Biomass. Journal of Energy Resources Technology 2012:134(4)1–11. https://doi.org/10.1115/1.400748410.1115/1.4007484 Search in Google Scholar

[15] Holman, J. P. Heat transfer. 9th Edition. New York, Boston: McGraw-Hill, 2002. Search in Google Scholar

[16] MacLean J. D. Thermal conductivity of wood. Heating, piping & air conditioning. Madison: USA, 1941. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other