Cite

[1] Blumberga A., Timma L., Blumberga D. System dynamic model for the accumulation of renewable electricity using Power-to-Gas and Power-to-Liquid concepts. Environmental and Climate Technologies 2015:16:54–68. https://doi.org/10.1515/rtuect-2015-001210.1515/rtuect-2015-0012 Search in Google Scholar

[2] Gonzalez Diez N., et al. North Sea Energy Technical assessment of Hydrogen transport, compression, processing offshore. As part of Topsector Energy: TKI Offshore Wind & TKI New Gas. Denmark: NSE, 2020. Search in Google Scholar

[3] Shang J., et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures. Scripta Materialia 2020:189:67–71. https://doi.org/10.1016/j.scriptamat.2020.08.01110.1016/j.scriptamat.2020.08.011 Search in Google Scholar

[4] Marcogaz. Overview of Available Test Results and Regulatory Limits for Hydrogen Admission into Existing Natural Gas Infrastructure and End Use. Brussels: Macrogaz, 2019. Search in Google Scholar

[5] Technical and economic conditions for injecting hydrogen into natural gas networks. Final report, June 2019. Search in Google Scholar

[6] Quarton C. J., Samsatli S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renewable and Sustainable Energy Reviews 2018:98:302–316. https://doi.org/10.1016/j.rser.2018.09.00710.1016/j.rser.2018.09.007 Search in Google Scholar

[7] Leicher J., et al. Hydrogen in natural gas: how does it impact industrial end users. Proceedings of the World Gas Conference 2018. Search in Google Scholar

[8] Ogden J., et al. Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy 2018:115:317–329. https://doi.org/10.1016/j.enpol.2017.12.04910.1016/j.enpol.2017.12.049 Search in Google Scholar

[9] Tlili O., et al. Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains. International Journal of Hydrogen Energy 2020:45(4):3053–3072. https://doi.org/10.1016/j.ijhydene.2019.11.00610.1016/j.ijhydene.2019.11.006 Search in Google Scholar

[10] Reuß M., et al. A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany. Applied Energy 2019:247:438–453. https://doi.org/10.1016/j.apenergy.2019.04.064.10.1016/j.apenergy.2019.04.064 Search in Google Scholar

[11] Kleperis J., et al. Analysis of the Role of the Latvian Natural Gas Network for the use of Future Energy Systems: Hydrogen from Res. Latvian Journal of Physics and Technical Sciences 2021:58:214–226. https://doi.org/10.2478/lpts-2021-0027.10.2478/lpts-2021-0027 Search in Google Scholar

[12] Gondal I. A. Hydrogen integration in power-to-gas networks. International Journal of Hydrogen Energy 2019:44(3):1803–1815. https://doi.org/10.1016/j.ijhydene.2018.11.164.10.1016/j.ijhydene.2018.11.164 Search in Google Scholar

[13] Rigas F., Amyotte P. Myths and facts about hydrogen hazards. Chemical Engineering Transactions 2013:31:913–918. https://doi.org/10.3303/CET1331153. Search in Google Scholar

[14] Messaoudani Z., et al. Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review. International Journal of Hydrogen Energy 2016:41(39):17511–17525. https://doi.org/10.1016/j.ijhydene.2016.07.171.10.1016/j.ijhydene.2016.07.171 Search in Google Scholar

[15] EIGA. Hydrogen transportation pipelines. IGC Doc 121/04/E 2004:77. Search in Google Scholar

[16] HySafe. Chapter V: Hydrogen Safety Barriers and Safety Measures. Biennial Report on Hydrogen Safety. Eggenstein-Leopoldshafen: Forschungszentrum Karlsruhe, 2006. Search in Google Scholar

[17] Speirs J., et al. A greener gas grid: what are the options? Energy Policy 2018:118:291–297. https://doi.org/10.1016/j.enpol.2018.03.06910.1016/j.enpol.2018.03.069 Search in Google Scholar

[18] Pöyry GND. Gas quality harmonisation cost benefit analysis: final report. Loughborough: DNV, 2012. Search in Google Scholar

[19] Įsakymas dėl gamtinių dujų kokybės reikalavimų patvirtinimo (Quality Requirements for Natural Gas), Minister for Energy of the Republic of Lithuania, 04.10.2013, Nr. 1-194, Lithuania Search in Google Scholar

[20] Gaasituru toimimise võrgueeskiri (Network code for the operation of the gas market) The Minister of Economic Affairs and infrastructure 28.07.2017 nr 41, Estonia. Search in Google Scholar

[21] Dabasgāzes tirdzniecības un lietošanas noteikumi (Regulations Regarding the Trade and Use of Natural Gas), Cabinet of Ministers of Latvia. Regulation No 78. Latvijas Vēstnesis 2017:44. Search in Google Scholar

[22] Elering AS. Average monthly gas quality. July 2020. Tallin: Elering, 2020. Search in Google Scholar

[23] CEN. ISO 6976:2016. Natural gas - Calculation of calorific values, density, relative density and Wobbe indices from composition 2016. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other