[
[1] Tan K. H. Humic matter in soils and the environment. Principles and controversies. Boca Raton: CRC Press, 2014.
]Search in Google Scholar
[
[2] Steinberg C. E. Ecology of humic substances in freshwaters. Berlin: Springer, 200310.1007/978-3-662-06815-1
]Search in Google Scholar
[
[3] Sire J., Klavins M., Purmalis O., Melecis V. Experimental study of peat humification indicators. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact and Applied Sciences 2008:62:18–26. https://doi.org/10.2478/v10046-008-0009-y10.2478/v10046-008-0009-y
]Search in Google Scholar
[
[4] Suddarth S. R., et al. Can humic substances improve soil fertility under salt stress and drought conditions? Journal of Environmental Quality 2019:48(6):1605–1613. https://doi.org/10.2134/jeq2019.02.007110.2134/jeq2019.02.0071
]Search in Google Scholar
[
[5] Canellas L. P., et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 2015:196:15–27. https://doi.org/10.1016/j.scienta.2015.09.01310.1016/j.scienta.2015.09.013
]Search in Google Scholar
[
[6] Mullen R. W., Thomason W. E., Raun W. R. Estimated increase in atmospheric carbon dioxide due to worldwide decrease in soil organic matter. Communications in Soil Science and Plant Analysis 1999:30(11–12):1713–1719. https://doi.org/10.1080/0010362990937032410.1080/00103629909370324
]Search in Google Scholar
[
[7] Klavins M., et al. A comparative study of the properties of industrially produced humic substances. Agronomy Research 2020:18(3):2076–2086. https://doi.org/10.15159/AR.20.185
]Search in Google Scholar
[
[8] Stenmarck A., et al. Estimates of European food waste levels. Stockholm: EC, 2016.
]Search in Google Scholar
[
[9] Titirici M. M., Thomas A., Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 2007:31(6):787–789. https://doi.org/10.1039/B616045J10.1039/b616045j
]Search in Google Scholar
[
[10] Yang, F., Antonietti, M. Artificial humic acids: sustainable materials against climate change. Advanced Science 2020:7(5):1–7. https://doi.org/10.1002/advs.20190299210.1002/advs.201902992705556332154079
]Search in Google Scholar
[
[11] Zhang S., et al. Efficient phosphorus recycling and heavy metal removal from wastewater sludge by a novel hydrothermal humification-technique. Chemical Engineering Journal 2020:394(1):124832. https://doi.org/10.1016/j.cej.2020.12483210.1016/j.cej.2020.124832
]Search in Google Scholar
[
[12] Yang F., et al. Conjugation of artificial humic acids with inorganic soil matter to restore land for improved conservation of water and nutrients. Land Degradation & Development 2020:31(7):884–893. https://doi.org/10.1002/ldr.348610.1002/ldr.3486
]Search in Google Scholar
[
[13] Yang F., et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Science of the Total Environment 2019:686:1140–1151. https://doi.org/10.1016/j.scitotenv.2019.06.04510.1016/j.scitotenv.2019.06.04531412510
]Search in Google Scholar
[
[14] Remón J., et al. Production of fermentable species by microwave-assisted hydrothermal treatment of biomass carbohydrates: reactivity and fermentability assessments. Green Chemistry 2018:20(19):4507–4520.10.1039/C8GC02182A
]Search in Google Scholar
[
[15] Grönroos A., Pirkonen P. Ruppert O. Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrasonics Sonochemistry 2004:11(1):9–12. https://doi.org/10.1039/c8gc02182a10.1039/C8GC02182A
]Search in Google Scholar
[
[16] Yang F., et al. One-step fabrication of artificial humic acid-functionalized colloid-like magnetic biochar for rapid heavy metal removal. Bioresource Technology 2021:328:124825. https://doi.org/10.1016/j.biortech.2021.12482510.1016/j.biortech.2021.12482533609885
]Search in Google Scholar
[
[17] Shen Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy 2020:134:105479. https://doi.org/10.1016/j.biombioe.2020.10547910.1016/j.biombioe.2020.105479
]Search in Google Scholar
[
[18] Du Q., et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. Journal of Hazardous Materials 2020:389:122115. https://doi.org/10.1016/j.jhazmat.2020.12211510.1016/j.jhazmat.2020.12211532006936
]Search in Google Scholar
[
[19] Tang C., et al. Artificial humic substances improve microbial activity for binding CO2. iScience 2021:42(6):102647. https://doi.org/10.1016/j.isci.2021.10264710.1016/j.isci.2021.102647838757134466779
]Search in Google Scholar
[
[20] Antonietti M., et al. Tackling the World’s Phosphate Problem: Synthetic Humic Acids solubilize otherwise insoluble Phosphates for Fertilization. Angewandte Chemie, International Edition in English 2019:58(52):8813–18816. https://doi.org/10.1002/anie.20191106010.1002/anie.201911060697312331621138
]Search in Google Scholar
[
[21] Zhao L., et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Advanced materials 2010:22(45):5202-5206. https://doi.org/10.1002/adma.20100264710.1002/adma.20100264720862714
]Search in Google Scholar
[
[22] Dos Santos J. V., et al. Humic-like acids from hydrochars: Study of the metal complexation properties compared with humic acids from anthropogenic soils using PARAFAC and time-resolved fluorescence. Science of the Total Environment 2020:722:137815. https://doi.org/10.1016/j.scitotenv.2020.13781510.1016/j.scitotenv.2020.13781532179299
]Search in Google Scholar
[
[23] Yang F., Tang C., Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chemical Society Reviews 2021:50:6221–6239. https://doi.org/10.1039/D0CS01363C10.1039/D0CS01363C
]Search in Google Scholar