Open Access

Experimental Investigation and Prediction of Charging/Discharging Performance of Phase Change Material based Thermal Energy Storage Unit


Cite

[1] Calderón A., et al. Where is Thermal Energy Storage (TES) research going? – A bibliometric analysis. Solar Energy 2020:200:37–50. https://doi.org/10.1016/j.solener.2019.01.05010.1016/j.solener.2019.01.050 Search in Google Scholar

[2] Nazir H., et al. Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer 2019:129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.12610.1016/j.ijheatmasstransfer.2018.09.126 Search in Google Scholar

[3] Zondag H. A., et al. Performance analysis of industrial PCM heat storage lab prototype. Journal of Energy Storage 2018:18:402–413. https://doi.org/10.1016/j.est.2018.05.00710.1016/j.est.2018.05.007 Search in Google Scholar

[4] Zauner C., et al. Experimental characterization and simulation of a hybrid sensible-latent heat storage. Applied Energy 2017:189:506–519. https://doi.org/10.1016/j.apenergy.2016.12.07910.1016/j.apenergy.2016.12.079 Search in Google Scholar

[5] Dzikevics M., Veidenbergs I., Valančius K. Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System. Environmental and Climate Technologies 2020:24:378–391. https://doi.org/10.2478/rtuect-2020-002210.2478/rtuect-2020-0022 Search in Google Scholar

[6] Mahdi J. M., Lohrasbi S., Nsofor E. C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer 2019:137:630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.11110.1016/j.ijheatmasstransfer.2019.03.111 Search in Google Scholar

[7] Zayed M. E., et al. Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. Journal of Energy Storage 2020:30:101341. https://doi.org/10.1016/j.est.2020.10134110.1016/j.est.2020.101341 Search in Google Scholar

[8] Besagni G., Croci L. Experimental study of a pilot-scale fin-and-tube phase change material storage. Applied Thermal Engineering 2019:160:114089. https://doi.org/10.1016/j.applthermaleng.2019.11408910.1016/j.applthermaleng.2019.114089 Search in Google Scholar

[9] Kabbara M., Groulx D., Joseph A. Experimental investigations of a latent heat energy storage unit using finned tubes. Applied Thermal Engineering 2016:101:601–611. https://doi.org/10.1016/j.applthermaleng.2015.12.08010.1016/j.applthermaleng.2015.12.080 Search in Google Scholar

[10] Nóbrega C. R. E. S., Ismail K. A. R., Lino F. A. M. Correlations for predicting the performance of axial finned tubes submersed in PCM. Journal of Energy Storage 2019:26:100973. https://doi.org/10.1016/j.est.2019.10097310.1016/j.est.2019.100973 Search in Google Scholar

[11] Mahdi M. S., et al. Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. Journal of Energy Storage 2019:23:456–468. https://doi.org/10.1016/j.est.2019.04.01310.1016/j.est.2019.04.013 Search in Google Scholar

[12] Yu X., et al. Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: A comparative study. Applied Thermal Engineering 2021:186:116527. https://doi.org/10.1016/j.applthermaleng.2020.11652710.1016/j.applthermaleng.2020.116527 Search in Google Scholar

[13] Yu C., et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins. Journal of Energy Storage 220:30:101498. https://doi.org/10.1016/j.est.2020.10149810.1016/j.est.2020.101498 Search in Google Scholar

[14] Sciacovelli A., Gagliardi F., Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy 2015:137:707–715. https://doi.org/10.1016/j.apenergy.2014.07.01510.1016/j.apenergy.2014.07.015 Search in Google Scholar

[15] Rubitherm Technologies GmbH. Data sheet RT82 [Online]. [Accessed 20.01.2021]. Available: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT82_EN_09102020.PDF Search in Google Scholar

[16] Pakalka S., Valančius K., Streckienė G. Experimental comparison of the operation of PCM-based copper heat exchangers with different configurations. Applied Thermal Engineering 2020:172:115138. https://doi.org/10.1016/j.applthermaleng.2020.11513810.1016/j.applthermaleng.2020.115138 Search in Google Scholar

[17] Pakalka S., Valančius K., Streckienė G. Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger. Energies 2021:14(3):716. https://doi.org/10.3390/en1403071610.3390/en14030716 Search in Google Scholar

[18] Pakalka S., Valančius K., Damonskis M. Effect of Open and Closed Operation Modes on the Performance of Phase Change Material Based Copper Heat Exchanger. Presented at the 11th International Conference on Environmental Engineering, Vilnius, Lithuania, 2020. https://doi.org/10.3846/enviro.2020.61110.3846/enviro.2020.611 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other