Open Access

Capture, Storage and Utilization of Carbon Dioxide by Microalgae and Production of Biomaterials


Cite

[1] Copernicus. Press releases. Copernicus: 2020 warmest year on record for Europe; globally, 2020 ties with 2016 for warmest year recorded. [Online]. Available: https://climate.copernicus.eu/2020-warmest-year-record-europe-globally-2020-ties-2016-warmest-year-recorded Search in Google Scholar

[2] Kumar M., Sundaram S., Gnansounou E., Larroche C., Thakura I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresource Technology 2018:247:1059–1068. https://doi.org/10.1016/j.biortech.2017.09.05010.1016/j.biortech.2017.09.05028951132 Search in Google Scholar

[3] Thakur I. S., Kumar M., Varjanib S. J., Wu Y., Gnansounou E., Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Bioresource Technology 2018:256:478–490. https://doi.org/10.1016/j.biortech.2018.02.03910.1016/j.biortech.2018.02.03929459105 Search in Google Scholar

[4] Wilberforce T., Baroutaji A., Soudan B., Hai Al-Alami A., Ghani Olabi A. Outlook of carbon capture technology and challenges. Science of The Total Environment 2019:657:56–72. https://doi.org/10.1016/j.scitotenv.2018.11.42410.1016/j.scitotenv.2018.11.42430530219 Search in Google Scholar

[5] Rashidi N. A., Yusup S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization 2016:13:1–16. https://doi.org/10.1016/j.jcou.2015.11.00210.1016/j.jcou.2015.11.002 Search in Google Scholar

[6] Herzog H., Meldon J., Hatton A. Advanced post-combustion CO2 capture, Clean Air Task Force report 2009:1–39. Available: https://www.researchgate.net/publication/265454631_Advanced_Post-Combustion_CO_2_Capture Search in Google Scholar

[7] Wahby A., Silvestre-Albero J., Sepúlveda-Escribano A., Rodríguez-Reinoso F. CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials 2012:164:280–287. https://doi.org/10.1016/j.micromeso.2012.06.03410.1016/j.micromeso.2012.06.034 Search in Google Scholar

[8] Khalilpour R., Mumford K., Zhai H., Abbas A., Stevens G., Rubin E. S. Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production 2015:103:286–300. https://doi.org/10.1016/j.jclepro.2014.10.05010.1016/j.jclepro.2014.10.050 Search in Google Scholar

[9] Strong A., Chisholm S., Miller C., Cullen J. Ocean fertilization: time to move on. Nature 2009:461:347–348. https://doi.org/10.1038/461347a10.1038/461347a19759603 Search in Google Scholar

[10] Singh J., Dhar D. W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the- Art. Frontiers in Marine Science 2019:6:29. https://doi.org/10.3389/fmars.2019.0002910.3389/fmars.2019.00029 Search in Google Scholar

[11] Steffens L., Pettinato E., Steiner T. M., Mall A., König S., Eisenreich W., Berg I. A. High CO2 levels drive the TCA cycle backwards towards autotrophy. Nature 2021:592:784–788. https://doi.org/10.1038/s41586-021-03456-910.1038/s41586-021-03456-933883741 Search in Google Scholar

[12] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production frpm biomass. European Biomass Conference and Exhibition Proceedings 2018:816–820. https://doi.org/10.5071/26thEUBCE2018-2CV.5.35 Search in Google Scholar

[13] Castellan N., Conti F. Molecular biotechnology to improve biofuel production from biomass. European Biomass Conference and Exhibition Proceedings 2019:951–957. https://doi.org/10.5071/27thEUBCE2019-2CV.6.24 Search in Google Scholar

[14] Ng I-S., Tan S.-I., Kao P.-H., Chang Y.-K., Chang J.-S. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnology Journal 2017:12(10):1600644. https://doi.org/10.1002/biot.20160064410.1002/biot.20160064428786539 Search in Google Scholar

[15] Choi Y.Y., Patel A. K., Hong M. E., Chang W. S., Sim S. J. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports 2019:7:100270. https://doi.org/10.1016/j.biteb.2019.10027010.1016/j.biteb.2019.100270 Search in Google Scholar

[16] Hosseini N. S., Shang H., Scott J. A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renewable and Sustainable Energy Reviews 2018:92:458–469. https://doi.org/10.1016/j.rser.2018.04.08610.1016/j.rser.2018.04.086 Search in Google Scholar

[17] Richardson J. W., Johnson M. D., Outlaw J. L. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research 2012:1(1):93–100. https://doi.org/10.1016/j.algal.2012.04.00110.1016/j.algal.2012.04.001 Search in Google Scholar

[18] Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Monitoring the mixing of an artificial model substrate in a scaledown laboratory digester. Renewable Energy 2019:132:351–362. https://doi.org/10.1016/j.renene.2018.08.01310.1016/j.renene.2018.08.013 Search in Google Scholar

[19] Wiedemann L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. European Biomass Conference and Exhibition Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14 Search in Google Scholar

[20] Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42:1099–1104. https://doi.org/10.1039/C7NJ03199H10.1039/C7NJ03199H Search in Google Scholar

[21] Wiedemann L., Conti F., Saidi A., Sonnleitner M., Goldbrunner M. Modeling Mixing in Anaerobic Digesters with Computational Fluid Dynamics Validated by Experiments. Chemical Engineering and Technology 2018:41(11):2101– 2110. https://doi.org/10.1002/ceat.20180008310.1002/ceat.201800083 Search in Google Scholar

[22] Jadhav D. A., Jain S. C., Ghangrekar M. M. Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells. Applied Biochemistry and Biotechnology 2017:183:1076–1092. https://doi.org/10.1007/s12010-017-2485-510.1007/s12010-017-2485-528466460 Search in Google Scholar

[23] Hoekman S. K., Broch A., Robbins C., Ceniceros E., Natarajan M. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews 2012:16(1):143–169. https://doi.org/10.1016/j.rser.2011.07.14310.1016/j.rser.2011.07.143 Search in Google Scholar

[24] Harris E. H. Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology 2001:52(1):363–406. https://doi.org/10.1146/annurev.arplant.52.1.36310.1146/annurev.arplant.52.1.36311337403 Search in Google Scholar

[25] Banerjee S., Ray A., Das D. Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Science of The Total Environment 2021:762:143080. https://doi.org/10.1016/j.scitotenv.2020.14308010.1016/j.scitotenv.2020.14308033162147 Search in Google Scholar

[26] Moon M., Kim C. W., Park W.-K., Yoo G., Choi Y.-E., Yang J.-W. Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research 2013:2(4):352–357. https://doi.org/10.1016/j.algal.2013.09.00310.1016/j.algal.2013.09.003 Search in Google Scholar

[27] Kumar K., Das D. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresource Technology 2012:116:307–313. https://doi.org/10.1016/j.biortech.2012.03.07410.1016/j.biortech.2012.03.07422525259 Search in Google Scholar

[28] Karpagam R., Preeti R., Ashokkumar B., Varalakshmi P. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicology and Environmental Safety 2012:121:253–257. https://doi.org/10.1016/j.ecoenv.2015.03.01510.1016/j.ecoenv.2015.03.01525838071 Search in Google Scholar

[29] Cakmak Z. E., Olmez T. T., Cakmak T., Menemen Y., Tekinay T. Induction of triacylglycerol production in Chlamydomonas reinhardtii: Comparative analysis of different element regimes. Bioresource Technology 2014:155:379–387. https://doi.org/10.1016/j.biortech.2013.12.09310.1016/j.biortech.2013.12.09324472680 Search in Google Scholar

[30] Chandra R., Rohit M. V., Swamy Y. V., Venkata Mohan S. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology 2014:165:279–287. https://doi.org/10.1016/j.biortech.2014.02.10210.1016/j.biortech.2014.02.10224703606 Search in Google Scholar

[31] Karpagam R., Jawahar R. K., Ashokkumar B., Varalakshmi P. Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology. Bioresource Technology 2015:188:177–184. https://doi.org/10.1016/j.biortech.2015.01.05310.1016/j.biortech.2015.01.05325682476 Search in Google Scholar

[32] Siaut M., et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 2011:11:7. https://doi.org/10.1186/1472-6750-11-710.1186/1472-6750-11-7303661521255402 Search in Google Scholar

[33] Fayyaz M., Chew K. W., Show P. L., Ling T. C., Ng I-S., Chang J.-S. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances 2020:43:107. https://doi.org/10.1016/j.biotechadv.2020.10755410.1016/j.biotechadv.2020.10755432437732 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other