Open Access

Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks


Cite

[1] Lund H., et al. 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. https://doi.org/10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089 Search in Google Scholar

[2] Bøhm B., Kristjansson H. Single, twin and triple buried heating pipes: on potential savings in heat losses and costs. International Journal Energy Res 2005:29:1301e12. https://doi.org/10.1002/er.111810.1002/er.1118 Search in Google Scholar

[3] Claesson J., Bennet J., Hellström G. Multipole method to compute the conductive heat flows to and between pipes in a cylinder. Lund: Department of Building Technology and Mathematical Physics, 1987. Search in Google Scholar

[4] Kvisgaard B, Hadvig S. Varmetab fra fjernvarmeledninger (Heat loss from pipelines in district heating systems). Lungby: DTU, 1980. (in Danish) Search in Google Scholar

[5] Wallentén P. Steady-state heat loss from insulated pipes. Lund: Department of Building Physics, Lund Institute of Technology, 1991. Search in Google Scholar

[6] DIN EN 13941–1:2019 District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design. Search in Google Scholar

[7] Oppelt T., Urbaneck T., Platzer B. New model for calculating the heat flow through the walls of buried parallel pipes. EuroHeat&Power 2013:10(3):38–43. Search in Google Scholar

[8] Bøhm B. On transient heat losses from buried district heating pipes. International Journal Energy Res 2000:24(15):1311–1334. https://doi.org/10.1002/1099-114X(200012)24:15<1311::AID-ER648>3.0.CO;2-Q10.1002/1099-114X(200012)24:15<1311::AID-ER648>3.0.CO;2-Q Search in Google Scholar

[9] Henögl O. Vergleich der thermischen Eigenschaften von verschiedenen bodenmechanisch geeigneten Bettungsmaterialien für Fernwärmeleitungen (Comparison of thermal properties of different soil mechanical bedding materials suitable for district heating pipelines). 7. Kolloquium Bauen in Boden und Fels, Germany, 2010. (in German) Search in Google Scholar

[10] Rosa A. D., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–2418. https://doi.org/10.1016/j.energy.2011.01.02410.1016/j.energy.2011.01.024 Search in Google Scholar

[11] Henning A., Limberg A. Veränderung des oberflächennahen Temperaturfeldes von Berlin durch Klimawandel und Urbanisierung (Changes in the near-surface temperature field of Berlin due to climate change and urbanization) Brandenburgische geowissenschaftliche Beiträge 2012:19:81–92. (in German) Search in Google Scholar

[12] Nord N., Ingebretsen M., Tryggestad I. Possibilities for Transition of Existing Residential Buildings to Low Temperature District Heating System in Norway. Proceedings of the 12th REHVA World Congress 2016:3:22–25. Search in Google Scholar

[13] Masatin V., Latõšev E., Volkova A. Evaluation Factor for District Heating Network Heat Loss with Respect to Network Geometry. Energy Procedia 2016:95:279-285. https://doi.org/10.1016/j.egypro.2016.09.069.10.1016/j.egypro.2016.09.069 Search in Google Scholar

[14] Rebollar J. V., Himpe E., Janssens A. Performance evaluation of a low temperature district heating system based on simulation, uncertainty and sensitivity analysis. International Building Performance Simulation, Proceedings 2013:3809–3816. Search in Google Scholar

[15] Olsen P. K., et. al. A New Low–Temperature District Heating System for Low Energy Buildings. Presented at the 11th International Symposium on District Heating and Cooling, Reykjavik, Iceland, 2008. Search in Google Scholar

[16] Wärmekataster für die Freie und Hansestadt Hamburg (Heat register for the Free and Hanseatic City of Hamburg) [Online]. [Acessed 31.01.2021]. Available: https://www.hamburg.de/energiewende/waermekataster/8342506/waermekataster-fuer-die-fhh/ (in German) Search in Google Scholar

[17] DIN/TS 12831–1:2020–04 Method for calculation of the room heat load–Part 1: National addition to DIN EN 12831–1. Search in Google Scholar

[18] TAB–HW Stadtwerke Schwerin GmbH (Technical connection conditions Stadtwerke Schwerin GmbH). Schwerin: Stadtwerke Schwerin GmbH, 2015. (in German) Search in Google Scholar

[19] Landeshauptstadt Schwerin. Energetische Stadtsanierung Schwerin (Energy-related urban redevelopment Schwerin). Schwerin: Landeshauptstadt Schwerin, 2012. (in German) Search in Google Scholar

[20] TAB–HW HanseWerk Natur GmbH (Technical connection conditions HanseWerk Natur GmbH). Hamburg: HanseWerk Natur GmbH, 2020. (in German) Search in Google Scholar

[21] TAB–HW Wärme Hamburg GmbH (Technical connection conditions Wärme Hamburg GmbH). Hamburg: HanseWerk Natur GmbH, 2020. (in German) Search in Google Scholar

[22] RWE Group. Technische Anschlussbedingungen für den Anschluss an das Fernwärmenetz Hamburg Rahlstedt– Meiendorf der innogy SE (Technical connection conditions innogy SE). Essen: RWE Group, 2014. (in German) Search in Google Scholar

[23] Dahlem K. H. Der Einfluß des Grundwassers auf den Wärmeverlust erdreichberührter Bauteile (The effect of groundwater on the heat loss of building parts in contact with the ground). Thesis. Kaiserslautern: University of Kaiserslautern, 2000. (in German) Search in Google Scholar

[24] DIN 4710:2003–01 Statistics on German meteorological data for calculating the energy requirements for heating and air conditioning equipment. Search in Google Scholar

[25] DWD Climate Data Center (CDC): Historische stündliche Stationsmessungen der Erdbodentemperatur für Deutschland (Historical hourly measurements of ground temperature for Germany). Version v006. Offenbach: DWD CDC, 2018. (in German) Search in Google Scholar

[26] AGFW FW 440. Teil 2. Hydraulic calculation of heating water district heating networks – Fundamentals of steady– state calculation, characteristic values and calculation variables. Frankfurt am Main: AGFW, 2012. Search in Google Scholar

[27] DIN EN 253:2020–03 District heating pipes - Bonded single pipe systems for directly buried hot water networks - Factory made pipe assembly of steel service pipe, polyurethane thermal insulation and a casing of polyethylene. Search in Google Scholar

[28] DIN EN 17415–1: 2019 District cooling pipes – Bonded single pipe systems for directly buried cold water networks – Part 1: Factory made pipe assembly of steel or plastic service pipe, polyurethane thermal insulation and a casing of polyethylene. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other