Cite

[1] Lazzaroni M., Bianchi Porro G. Preparation, premedication and surveillance. Endoscopy 2003:35:(2):103–111. https://doi.org/10.1055/s-2003-3701210.1055/s-2003-3701212561003 Search in Google Scholar

[2] Economidou M., Todeschi V., Bertoldi P., D’Agostino D., Zangheri P., Castellazzi L. Review of 50 years of EU energy efficiency policies for buildings. Energy and Buildings 2020:225:110322. https://doi.org/10.1016/j.enbuild.2020.11032210.1016/j.enbuild.2020.110322 Search in Google Scholar

[3] Kumar D., Alam M., Zou P. X. W., Sanjayan J. G., Memon R. A. Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews 2020:131:110038. https://doi.org/10.1016/j.rser.2020.11003810.1016/j.rser.2020.110038 Search in Google Scholar

[4] Nashaat B., Waseef A. Responsive Kinetic Façades: An Effective Solution for Enhancing Indoor Environmental Quality in Buildings. The First Memaryat International Conference (MIC 2017) Architecture of the Future: Challenges and Visions. Saudi Arabia, 2017. Search in Google Scholar

[5] Loonen R. C. G. M., Trčka M., Cóstola D., Hensen J. L. M. Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews 2013:25:483–493. https://doi.org/10.1016/j.rser.2013.04.01610.1016/j.rser.2013.04.016 Search in Google Scholar

[6] Hasselaar B. L. H. Climate adaptive skins: Towards the new energy-efficient façade. WIT Transactions on Ecology and the Environment 2006:99:351–360. https://doi.org/10.2495/RAV06035110.2495/RAV060351 Search in Google Scholar

[7] Mols T., Blumberga A., Karklina I. Evaluation of climate adaptive building shells: Multi-criteria analysis. Energy Procedia 2017:128:292–296. https://doi.org/10.1016/j.egypro.2017.09.07710.1016/j.egypro.2017.09.077 Search in Google Scholar

[8] Wang J., Beltrán L. O., Kim J. From static to kinetic: A review of acclimated kinetic building envelopes. World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference, 2012. Search in Google Scholar

[9] Shahin H. S. M. Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal 2019:58(1):345–352. https://doi.org/10.1016/j.aej.2018.11.01310.1016/j.aej.2018.11.013 Search in Google Scholar

[10] Kuru A., Oldfield P., Bonser S., Fiorito F. Biomimetic adaptive building skins: Energy and environmental regulation in buildings. Energy and Buildings 2019:205:109544. https://doi.org/10.1016/j.enbuild.2019.10954410.1016/j.enbuild.2019.109544 Search in Google Scholar

[11] Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.00510.1016/j.rser.2019.01.005 Search in Google Scholar

[12] Jouhara H., Milko J., Danielewicz J., Sayegh M. A., Szulgowska-Zgrzywa M., Ramos J. B., Lester S. P. The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material. Energy 2016:108:148–154. https://doi.org/10.1016/j.energy.2015.07.06310.1016/j.energy.2015.07.063 Search in Google Scholar

[13] Yu G., Yu J., Hu Y., Cheng X., Liu H., Liu W. Moisture transport analysis for integrated structures of flat plate solar collector and building envelope. Solar Energy 2021:217:145–154. https://doi.org/10.1016/j.solener.2021.01.06810.1016/j.solener.2021.01.068 Search in Google Scholar

[14] Elghamry R., Hassan H., Hawwash A. A. A parametric study on the impact of integrating solar cell panel at building envelope on its power, energy consumption, comfort conditions, and CO2 emissions. Journal of Cleaner Production 2020:249:119374. https://doi.org/10.1016/j.jclepro.2019.11937410.1016/j.jclepro.2019.119374 Search in Google Scholar

[15] Schneider A., Karin M., Kuhn T. E. Building-Integrated Photovoltaics Moves from the Niche to the Mass Market Industrial manufacture of solar building components and their integration into the building planning process Photovoltaic Building Components: Multiple Advantages for Building Owners Press release. [Online]. [Accessed 14 June 2021]. Available: www.ise.fraunhofer.de Search in Google Scholar

[16] Sari A. Thermal Energy Storage and Applications Using Phase Change Materials. 3rd International Turkic World Conference on Chemical Sciences and Technologies, 2017. Search in Google Scholar

[17] Soibam J. Numerical Investigation of a heat exchanger using phase change materials (PCMs). NTNU, 2017. Search in Google Scholar

[18] Romdhane S. B., Amamou A., Ben Khalifa, Rim, SAÏD, Nejla Mahjoub, Younsi, Zohir and Jemni, Abdelmajid. A review on thermal energy storage using phase change materials in passive building applications. Journal of Building Engineering 2020:32:101563. https://doi.org/10.1016/j.jobe.2020.10156310.1016/j.jobe.2020.101563 Search in Google Scholar

[19] Lin Y., Alva G., Fang G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 2018:165(PA):685–708. https://doi.org/10.1016/j.energy.2018.09.12810.1016/j.energy.2018.09.128 Search in Google Scholar

[20] Baetens R., Jelle B. P., Gustavsen A. phase change materials for building applications: A state-of-the-art review. Energy and Buildings 2010:42(9):1361–1368. https://doi.org/10.1016/j.enbuild.2010.03.02610.1016/j.enbuild.2010.03.026 Search in Google Scholar

[21] Sarbu I., Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability (Switzerland) 2018:10: (1):10010191. https://doi.org/10.3390/su1001019110.3390/su10010191 Search in Google Scholar

[22] Heier J., Bales C., Martin V. Combining thermal energy storage with buildings – A review. Renewable and Sustainable Energy Reviews 2015:42:1305–1325. https://doi.org/10.1016/j.rser.2014.11.03110.1016/j.rser.2014.11.031 Search in Google Scholar

[23] Vanaga R., Blumberga A., Freimanis R., Mols T., Blumberga D. Solar façade module for nearly zero energy building. Energy 2018:157:1025–1034. https://doi.org/10.1016/j.energy.2018.04.16710.1016/j.energy.2018.04.167 Search in Google Scholar

[24] Mols T., Vanaga R., Blumberga A. Solar Façade Module for Nearly Zero Energy Building. Extended Test Period. Environmental and Climate Technologies. 2020:24(1):442–453. https://doi.org/10.2478/rtuect-2020-002710.2478/rtuect-2020-0027 Search in Google Scholar

[25] Sirmelis R., Vanaga R., Freimanis R., Blumberga A. Solar Façade Module for Nearly Zero Energy Building. Optimization Strategies. Environmental and Climate Technologies 2019:23(3):170–181. https://doi.org/10.2478/rtuect-2019-008710.2478/rtuect-2019-0087 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other