Cite

[1] European Comission. A Clean Planet for all. A European strategic long-term vision. 2018. [Online]. [Accessed: 08.03.2021]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0773&from Search in Google Scholar

[2] Fleiter T. et al. A methodology for bottom-up modelling of energy transitions in the industry sector: The FORECAST model. Energy Strategy Reviews 2018:22:237–254. https://doi.org/10.1016/j.esr.2018.09.00510.1016/j.esr.2018.09.005 Search in Google Scholar

[3] Dolge K., Kubule A., Blumberga D. Composite index for energy efficiency evaluation of industrial sector: sub-sectoral comparison. Environmental and Sustainability Indicators 2020:8:100062. https://doi.org/10.1016/j.indic.2020.10006210.1016/j.indic.2020.100062 Search in Google Scholar

[4] Marques A. C., Fuinhas J. A., Tomás C. Energy efficiency and sustainable growth in industrial sectors in European Union countries: A nonlinear ARDL approach. Journal of Cleaner Production 2019:239:118045. https://doi.org/10.1016/j.jclepro.2019.11804510.1016/j.jclepro.2019.118045 Search in Google Scholar

[5] Loulou R., Goldstein G., Kanudia A., Lettila A., Remme U., Noble K. Documentation for the TIMES Model PART I. Concepts and Theory. 2016, [Online]. [Accessed: 15.03.2021]. Available: https://iea-etsap.org/index.php/etsap-tools/model-generators/times Search in Google Scholar

[6] Wang H., Chen W. Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe. Applied Energy 2019:238:1563–1572. https://doi.org/10.1016/j.apenergy.2019.01.13110.1016/j.apenergy.2019.01.131 Search in Google Scholar

[7] Obrist M. D., Kannan R., Schmidt T. J., Kober T. Decarbonization pathways of the Swiss cement industry towards net zero emissions. Journal of Cleaner Production 2021:288:125413. https://doi.org/10.1016/j.jclepro.2020.12541310.1016/j.jclepro.2020.125413 Search in Google Scholar

[8] Calvo V. L. V., Giner-Santonja G., Alonso-Fariñas B., Aguado J. M. The effect of the European Industrial Emissions Directive on the air emission limit values set by competent authorities in the permitting procedure: The case of the Spanish cement industry. Science of the Total Environment 2021:773:145491. https://doi.org/10.1016/j.scitotenv.2021.14549110.1016/j.scitotenv.2021.14549133940728 Search in Google Scholar

[9] Hache E., Simoën M., Seck G. S., Bonnet C., Jabberi A., Carcanague S. The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios. International Economics 2019:163:114–133. https://doi.org/10.1016/j.inteco.2020.05.00210.1016/j.inteco.2020.05.002 Search in Google Scholar

[10] Dhar S., Pathak M., Shukla P. R. Transformation of India’s steel and cement industry in a sustainable 1.5 °C world, Energy Policy 2020:137:111104. https://doi.org/10.1016/j.enpol.2019.11110410.1016/j.enpol.2019.111104 Search in Google Scholar

[11] Brunke J. C., Blesl M. Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs. Journal of Cleaner Production 2014:82:94–111. https://doi.org/10.1016/j.jclepro.2014.06.07410.1016/j.jclepro.2014.06.074 Search in Google Scholar

[12] Kermeli K. et al. The scope for better industry representation in long-term energy models: Modeling the cement industry Applied Energy 2019:240:964–985. https://doi.org/10.1016/j.apenergy.2019.01.25210.1016/j.apenergy.2019.01.252 Search in Google Scholar

[13] Yao Y., E. Masanet. Life-cycle modeling framework for generating energy and greenhouse gas emissions inventory of emerging technologies in the chemical industry. Journal of Cleaner Production 2018:172:768–777. https://doi.org/10.1016/j.jclepro.2017.10.12510.1016/j.jclepro.2017.10.125 Search in Google Scholar

[14] Geng Z., Zhang Y., Li C., Han Y., Cui Y., Yu B. Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature. Energy 2020:194:116851. https://doi.org/10.1016/j.energy.2019.11685110.1016/j.energy.2019.116851 Search in Google Scholar

[15] Han Y., Long C., Geng Z., Zhu Q., Zhong Y. A novel DEACM integrating affinity propagation for performance evaluation and energy optimization modeling: Application to complex petrochemical industries. Energy Conversion and Management 2019:183:349–359. https://doi.org/10.1016/j.enconman.2018.12.12010.1016/j.enconman.2018.12.120 Search in Google Scholar

[16] Geng Z., Bai J., Jiang D., Han Y. Energy structure analysis and energy saving of complex chemical industries: A novel fuzzy interpretative structural model. Appl. Therm. Eng., 2018:142:433–443.10.1016/j.applthermaleng.2018.07.030 Search in Google Scholar

[17] Griffin P. W., Hammond G. P. Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective. Applied Energy 2019:249:109–125. https://doi.org/10.1016/j.apenergy.2019.04.14810.1016/j.apenergy.2019.04.148 Search in Google Scholar

[18] Griffin P. W., Hammond G. P. Analysis of the potential for energy demand and carbon emissions reduction in the iron and steel sector. Energy Procedia 2019:158:3915–3922. https://doi.org/10.1016/j.egypro.2019.01.85210.1016/j.egypro.2019.01.852 Search in Google Scholar

[19] Ahlström J. M., Zetterholm J., Pettersson K., Harvey S., Wetterlund E. Economic potential for substitution of fossil fuels with liquefied biomethane in Swedish iron and steel industry – Synergy and competition with other sectors, Energy Conversion and Management 2020:209:112641. https://doi.org/10.1016/j.enconman.2020.11264110.1016/j.enconman.2020.112641 Search in Google Scholar

[20] Vögele S., Grajewski M., Govorukha K., Rübbelke D. Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development. Applied Energy 2020:264:114633. https://doi.org/10.1016/j.apenergy.2020.11463310.1016/j.apenergy.2020.114633 Search in Google Scholar

[21] Lerede D., Bustreo C., Gracceva F., Saccone M., Savoldi L. Techno-economic and environmental characterization of industrial technologies for transparent bottom-up energy modeling. Renewable and Sustainable Energy Reviews 2021:140:110742. https://doi.org/10.1016/j.rser.2021.11074210.1016/j.rser.2021.110742 Search in Google Scholar

[22] Xu Y., Szmerekovsky J. System dynamic modeling of energy savings in the US food industry. Journal of Cleaner Production 2017:165:13–26. https://doi.org/10.1016/j.jclepro.2017.07.09310.1016/j.jclepro.2017.07.093 Search in Google Scholar

[23] Seck G. S., Guerassimoff G., Maïzi N. Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry. Applied Energy 2013:111:489–504. https://doi.org/10.1016/j.apenergy.2013.05.03510.1016/j.apenergy.2013.05.035 Search in Google Scholar

[24] Jonkman J., Castiglioni A., Akkerman R., van der Padt A. Improving resource efficiency in the food industry by using non-conventional intermediate products, Journal of Food Engineering 2020:287:110198. https://doi.org/10.1016/j.jfoodeng.2020.11019810.1016/j.jfoodeng.2020.110198 Search in Google Scholar

[25] Central Statistical Bureau of Latvia, RUG031. Volume indices of industrial production. [Online]. [Accessed: 13.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/rupnbuvn/rupnbuvn__rupn__ikgad/RUG031.px/table/tableViewLayout1/ Search in Google Scholar

[26] Central Statistical Bureau of Latvia, ENG020. Energy balance, TJ, thsd toe (NACE Rev.2). [Online]. [Accessed: 13.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG020.px/ Search in Google Scholar

[27] Central Statistical Bureau of Latvia, ENG030. ETS balance, TJ (NACE Rev.2). [Online]. [Accessed: 13.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG030.px/ Search in Google Scholar

[28] Central Statistical Bureau of Latvia, ENG040. Non-ETS balance, TJ (NACE Rev.2), [Online]. [Accessed: 13.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG040.px/ Search in Google Scholar

[29] Kubule A., Locmelis K., Blumberga D. Analysis of the results of national energy audit program in Latvia. Energy 2020:202:117679. https://doi.org/10.1016/j.energy.2020.11767910.1016/j.energy.2020.117679 Search in Google Scholar

[30] Capros P. et al. EU Reference Scenario 2016. 2016. [Online]. [Accessed: 13.03.2021]. Available: https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf Search in Google Scholar

[31] Central Statistical Bureau of Latvia, ENG190. Average prices of energy resources for final consumers (excluding VAT), [Online]. [Accessed: 13.03.2021]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG190.px/ Search in Google Scholar

[32] The Parliament of the Republic of Latvia, Law On Excise Duties. Latvijas Vestnesis 161, 2003. [Online]. [Accessed: 02.02.2021]. Available: http://likumi.lv/ta/en/en/id/81066-on-excise-duties Search in Google Scholar

[33] The Parliament of the Republic of Latvia, Natural Resources Tax Law. Latvijas Vestnesis 209, 2005. [Online]. [Accessed: 02.02.2021]. Available: http://likumi.lv/ta/en/en/id/124707-natural-resources-tax-law Search in Google Scholar

[34] The Danish Energy Agency, Catalogue of technology data for energy technologies. [Online]. [Accessed: 02.02.2021]. Available: https://ens.dk/en/our-services/projections-and-models/technology-data Search in Google Scholar

[35] De Vita A. et al. E3Mlab PRIMES model Technology pathways in decarbonisation scenarios, 2018. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other