1. bookVolume 24 (2020): Issue 3 (November 2020)
    SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART II: The Green Deal Umbrella for Environmental and Climate Technologies
Journal Details
License
Format
Journal
eISSN
2255-8837
First Published
26 Mar 2010
Publication timeframe
2 times per year
Languages
English
Open Access

Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment

Published Online: 14 Dec 2020
Volume & Issue: Volume 24 (2020) - Issue 3 (November 2020) - SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART II: The Green Deal Umbrella for Environmental and Climate Technologies
Page range: 483 - 492
Journal Details
License
Format
Journal
eISSN
2255-8837
First Published
26 Mar 2010
Publication timeframe
2 times per year
Languages
English

[1] Borawski P., Bełdycka-Borawska A., Szymanska E. J., Jankowski K. J., Dubis B., Dunn J. W. Development of renewable energy sources market and biofuels in The European Union. Journal of Cleaner Production 2019:228:467–484. https://doi.org/10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242Search in Google Scholar

[2] Skogstad G. Mixed feedback dynamics and the USA renewable fuel standard: the roles of policy design and administrative agency. Policy Sciences 2020:53:349–369. https://doi.org/10.1007/s11077-020-09378-z10.1007/s11077-020-09378-zSearch in Google Scholar

[3] Mabee W. E., McFarlane P. N., Saddler J. N. Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy 2011:35(11):4519–4529. https://doi.org/10.1016/j.biombioe.2011.06.02610.1016/j.biombioe.2011.06.026Search in Google Scholar

[4] Aunina Z., Bazbauers G., Valters K. Feasibility of Bioethanol Production From Lignocellulosic Biomass. Environmental and Climate Technologies 2010:4(1):11–15. https://doi.org/10.2478/v10145-010-0011-x10.2478/v10145-010-0011-xSearch in Google Scholar

[5] Amin F. R., Khalid H., Zhang H., Rahman S., Zhang R., Liu G., Chen C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017:7(1). https://doi.org/10.1186/s13568-017-0375-410.1186/s13568-017-0375-4537116828353158Search in Google Scholar

[6] Schell D. J., Harwood C. Milling of Lignocellulosic Biomass Results of Pilot-Scale Testing. Applied Biochemistry and Biotechnology 1994:45/46:159–165. https://doi.org/10.1007/BF0294179510.1007/BF02941795Search in Google Scholar

[7] Pol van der E., Bakker R., Zeeland van A., Sanchez G. D., Punt A., Eggink G. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: Differences between autohydrolysis, alkaline and acid pretreatment. Bioresource Technology 2015:181:114–123. https://doi.org/10.1016/j.biortech.2015.01.03310.1016/j.biortech.2015.01.03325643957Search in Google Scholar

[8] Agrawal R., Gaur R., Mathur A., Kumar R., Gupta R. P., Tuli D. K., Satlewal A. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes. RSC Advances 2015:5(87):71462–71471. https://doi.org/10.1039/C5RA13360B10.1039/C5RA13360BSearch in Google Scholar

[9] Digabel F. L., Avérous L. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydrate Polymers 2006:66(4):537–545. https://doi.org/10.1016/j.carbpol.2006.04.02310.1016/j.carbpol.2006.04.023Search in Google Scholar

[10] P. Li., Cai D., Luo Z., Qin P., Chen C., Wang Y., Zhang C., Wang Z., Tan T. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology 2016:206:86–92. https://doi.org/10.1016/j.biortech.2016.01.07710.1016/j.biortech.2016.01.07726849200Search in Google Scholar

[11] Taherzadeh M., Karimi K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Science 2008:9(9):1621–1651. https://doi.org/10.3390/ijms909162110.3390/ijms9091621Search in Google Scholar

[12] Zheng J., Rehmann L. Extrusion Pretreatment of Lignocellulosic Biomass: A Review. International Journal of Molecular Science 2014:15. https://doi.org/10.3390/ijms15101896710.3390/ijms151018967Search in Google Scholar

[13] Halder P., Kundu S., Patel S., Setiawan A., Atkin R., Parthasarthy R., Paz-Ferreiro J., Surapaneni A., Shah K. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews 2019:105:268–292. https://doi.org/10.1016/j.rser.2019.01.05210.1016/j.rser.2019.01.052Search in Google Scholar

[14] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067Search in Google Scholar

[15] Abouzied M. M., Reddy C. A. Direct Fermentation of Potato Starch to Ethanol by Cocultures of Aspergillus niger and Saccharomyces cerevisiaet. AEM 1986:52(5):1055–1059. https://doi.org/10.1128/AEM.52.5.1055-1059.198610.1128/aem.52.5.1055-1059.1986Search in Google Scholar

[16] Manchala K. R., Sun Y., Zhang D., Wang Z.-W. Chapter two: Anaerobic Digestion Modelling. Advances in Bioenergy 2017:2:69–141. https://doi.org/10.1016/bs.aibe.2017.01.00110.1016/bs.aibe.2017.01.001Search in Google Scholar

[17] Botheju D., Lie B., Bakke R. Oxygen effects in anaerobic digestion - A Review. MIC Journal 2010:31(2):55–65. https://doi.org/10.4173/mic.2010.2.210.4173/mic.2010.2.2Search in Google Scholar

[18] Boswell G. P., Jacobs H., Davidson F. A., Gadd G. M., Ritz K. Growth and function of fungal mycelia in heterogeneous environments. Bulletin of Mathematical Biology 2003:65(3):447–477. https://doi.org/10.1016/S0092-8240(03)00003-X10.1016/S0092-8240(03)00003-XSearch in Google Scholar

[19] Money N. P. Insights on the mechanics of hyphal growth. Fungal Biology Reviews 2008:22(2):71–76. https://doi.org/10.1016/j.fbr.2008.05.00210.1016/j.fbr.2008.05.002Search in Google Scholar

[20] Shi J., Sharma-Shivappa R. R., Chinn M., Howell N. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy 2009:33(1):88–96. https://doi.org/10.1016/j.biombioe.2008.04.01610.1016/j.biombioe.2008.04.016Search in Google Scholar

[21] Wagner A. O., Lackner N., Mutschlechner M., Prem E. M., Markt R., Illmer P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018:11(7):1797. https://doi.org/10.3390/en1107179710.3390/en11071797642008230881604Search in Google Scholar

[22] Rodríguez J., Ferra A., Nogueira R. F. P., Ferre I., Esposito E., Duran N. Lignin biodegradation by the ascomycete cnrysonilia sitophila. Applied Biochemistry and Biotechnology - Part A Enzym. Eng. Biotechnol 1997:62:233–242. https://doi.org/10.1007/BF0278799910.1007/BF027879999170255Search in Google Scholar

[23] Ayeronfe F., Kassim A., Hung P., Ishak N., Syarifah S., Aripin A. Production of ligninolytic enzymes by Coptotermes curvignathus gut bacteria. Environmental and Climate Technologies 2019:23(1):111–121. https://doi.org/10.2478/rtuect-2019-000810.2478/rtuect-2019-0008Search in Google Scholar

[24] Rahman N. H. A., Rahman N. A., Aziz S. A., Hassan M. A. Production of ligninolytic enzymes by newly isolated bacteria from palm oil plantation soils. BioResources 2013:8(4):6136–6150. https://doi.org/10.15376/biores.8.4.6136-615010.15376/biores.8.4.6136-6150Search in Google Scholar

[25] Ziemiński K., Romanowska I., Kowalska M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management 2012:32(6):1131–1137. https://doi.org/10.1016/j.wasman.2012.01.01610.1016/j.wasman.2012.01.01622342637Search in Google Scholar

[26] Asgher M., Iqbal H. M. N., Irshad M. Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs. BMC Biotechnology 2012:12:46. https://doi.org/10.1186/1472-6750-12-4610.1186/1472-6750-12-46344299922862820Search in Google Scholar

[27] Poszytek K., Ciezkowska M., Sklodowska A., Drewniak L. Microbial Consortium with High Cellulolytic Activity (MCHCA) for enhanced biogas production. Front. Microbiol. 2016:7:1–11. https://doi.org/10.3389/fmicb.2016.0032410.3389/fmicb.2016.00324479152827014244Search in Google Scholar

[28] Prasad D., Ankit M. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015:5:597–609. https://doi.org/10.1007/s13205-015-0279-410.1007/s13205-015-0279-4456962028324530Search in Google Scholar

[29] Jedrzejczyk M., Soszka E., Czapnik M., Ruppert A. M., Grams J. Physical and chemical pretreatment of lignocellulosic biomass. Second and Third Generation of Feedstocks. The Evolution of Biofuels 2019:143–196. https://doi.org/10.1016/B978-0-12-815162-4.00006-910.1016/B978-0-12-815162-4.00006-9Search in Google Scholar

[30] Saif M., Rehman U., Kim I., Chisti Y., Han J. Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ. Sci. Technol. Part A Energy Sci. Res 2013:30(2):1391–1410.Search in Google Scholar

[31] Bussemaker M. J., Zhang D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biore finery and Biofuel Applications. Ind. Eng. Chem. Res 2013:52(10):3563–3580. https://doi.org/10.1021/ie302278510.1021/ie3022785Search in Google Scholar

[32] Kratky L., Jirout T. Biomass Size Reduction Machines for Enhancing Biogas Production. Chem. Eng. Technol. 2011:34(3):391–399. https://doi.org/10.1002/ceat.20100035710.1002/ceat.201000357Search in Google Scholar

[33] Renders T., Schutyser W., Bosch van den S., Koelewijn S.-F., Vangeel T., Courtin C. M., Sels B. F. Influence of Acidic (H3PO4) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catal. 2016:6(3):2055–2066. https://doi.org/10.1021/acscatal.5b0290610.1021/acscatal.5b02906Search in Google Scholar

[34] Donghai S., Junshe S., Ping L., Yanping L. Effects of Different Pretreatment Modes on the Enzymatic Digestibility of Corn Leaf and Corn Stalk. Chinese Journal of Chemical Engeniering 2006:14(6):796–801. https://doi.org/10.1016/S1004-9541(07)60014-710.1016/S1004-9541(07)60014-7Search in Google Scholar

[35] Capári D., Dörgő G., Dallos A. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn St. Journal of Sustainable Development of Energy, Water and Environment Systems 2016:4(2):107–126. https://doi.org/10.13044/j.sdewes.2016.04.001010.13044/j.sdewes.2016.04.0010Search in Google Scholar

[36] Saaty T. L. Deriving the ahp 1-9 scale from first principles. Presented at 6th ISAHP, 2001.10.13033/isahp.y2001.030Search in Google Scholar

[37] Zakir H., Hasan M., Ara M. T. Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Production of Biofuel from Agricultural Plant Wastes: Corn Stover and Sugarcane Bagasse. 2016:4–11.Search in Google Scholar

[38] Wan C., Li Y. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology 2010:101(16):6398–6403. https://doi.org/10.1016/j.biortech.2010.03.07010.1016/j.biortech.2010.03.07020381341Search in Google Scholar

[39] Li Y., et al. Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Transactions of the ASAE 2004:47(3):821–825. https://doi.org/10.13031/2013.1607810.13031/2013.16078Search in Google Scholar

[40] Kim S., Holtzapple M. T. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology 2005:96(18):1994–2006. https://doi.org/10.1016/j.biortech.2005.01.01410.1016/j.biortech.2005.01.01416112487Search in Google Scholar

[41] Li H., Xu J. Bioresource Technology Optimization of microwave-assisted calcium chloride pretreatment of corn stover. Bioresource Technology 2013:127:112–118. https://doi.org/10.1016/j.biortech.2012.09.11410.1016/j.biortech.2012.09.11423131630Search in Google Scholar

[42] Chen W., Ye S., Sheen H. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 2012:93:237–244. https://doi.org/10.1016/j.apenergy.2011.12.01410.1016/j.apenergy.2011.12.014Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo