Open Access

Analysis of the Climatic Factors Influence on the Overhead Transmission Lines Reliability

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART II: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Ministry of Energy. Informacija ob avarijnosti v elektrosetjah i generacii (The accident rate of power engineering facilities) [Online]. [Accessed 10.10.2018]. Available: https://minenergo.gov.ru/node/267 (in Russian)Search in Google Scholar

[2] Rosgidromet. Ezhegodnie dokladi o sostojanii klimata (Annual climate reports) [Online]. [Accessed 20.07.2019]. Available: http://climatechange.igce.ru/index.php?option=com_docman&Itemid=73&gid=27&lang=ru (in Russian)Search in Google Scholar

[3] Godovie otcheti PAO ROSSETI (Annual reports of PAO ROSSETI), 2010–2018 [Online]. [Accessed 01.07.2019]. Available: https://rosseti.ru/investors/info/year/ (in Russian)Search in Google Scholar

[4] Kattsov V. M. et al. Doklad o klimaticheskih riskah na territorii Rossijskoj Federacii (Report on climate risks in the Russian Federation). St. Petersburg: Roshydromet, 2017. (in Russian)Search in Google Scholar

[5] Kislov A. V. Klimatologija s osnovami meteorologii (Climatology with the basics of meteorology). Moscow: Publishing Center Academy, 2016. (in Russian)Search in Google Scholar

[6] Klimenko V. V. Universaljnaja I globaljnaja istorija (evolucija Vselennoj, Zemli, zhizni I obschestva) (Universal and global history. Evolution of the Universe, Earth, Life, Society: Reader.). Volgograd: Uchitel, 2012. (in Russian)Search in Google Scholar

[7] Klimenko V. V. et al. Climate change and dynamics of the permafrost in Northwestern Russia with the next 300 years. Earth’s Cryosphere 2007:11(3):3–13.Search in Google Scholar

[8] Klimenko V. V., Tereshin A. G., Mikushina O. V. Izmenenija klimaticheskoh parametrov I ih rolj v rabote system teplosnabzhenija strain (Change of climatic parameters and their role in the operation of the country’s heat supply systems). News of heat supply 2008:8:5–13. (in Russian)Search in Google Scholar

[9] Volodin E. M., Dianskii N. A., Gusev A. V. Simulating present-day climate with INMCM 4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya, Atmospheric and Oceanic Physics 2010:46:448–466. https://doi.org/10.1134/S000143381004002X10.1134/S000143381004002XSearch in Google Scholar

[10] Volodin E. M. The nature of 60-year oscillations of the Arctic climate according to the data of the INM RAS climate model. Russian Journal of Numerical Analysis and Mathematical Modelling 2018:33:359–366. https://doi.org/10.1515/rnam-2018-003110.1515/rnam-2018-0031Search in Google Scholar

[11] Volodin E. M., et al. Simulation of the modern climate using the INM-CM48 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling 2018:33:367–374. https://doi.org/10.1515/rnam-2018-003210.1515/rnam-2018-0032Search in Google Scholar

[12] Titov A. V., Khoperskov A. V. Verifikacija regionaljnoj klimaticheskoj modeli RegCM V4.5 dlja Nizhnej Volgi (Verification of the Regional climate model RegCM v4.5 for the Lower Volga). Inform. technology and nanotechnology 2019:278–283. (in Russian)Search in Google Scholar

[13] Klikunova A. Yu., Khoperskov A. V. Numerical hydrodynamic model of the Lower Volga. IOP Conf. Series: Journal of Physics: Conf. Series 1128 2018:1–6. https://doi.org/10.1088/1742-6596/1128/1/01208710.1088/1742-6596/1128/1/012087Search in Google Scholar

[14] Titov A. V., Khoperskov A. V. Regional Climate Model for the Lower Volga: Parallelization Efficiency Estimation. Supercomputing Frontiers and Innovations 2018:5:107–110. http://dx.doi.org/10.14529/jsfi18041310.14529/jsfi180413Search in Google Scholar

[15] Khoperskov A. V., et al. Razvertivanie regionaljnoj klimaticheskoj modeli dlja Juga Rossii na osnove RegCM 4.5 (Deployment of the regional climate model for the south of Russia based on RegCM4.5). Mathematical Physics and Computer Simulation 2019:22:68–95. https://doi.org/10.15688/mpcm.jvolsu.2019.3.6 (in Russian)10.15688/mpcm.jvolsu.2019.3.6Search in Google Scholar

[16] Klimenko V. V. Energija, Priroda i Klimat (Energy, nature and climate). Moscow: Publishing House MPEI, 1997. (in Russian)Search in Google Scholar

[17] Klimenko V. V., Fedotova E. V. Gidroenergetika Rossii v uslovijah globaljnih izmenenij klimata (Hydropower of Russia in the context of global climate change.). Reports of the Academy of Sciences 2019:484:156–160. https://doi.org/10.31857/S0869-56524842156-160 (in Russian)10.31857/S0869-56524842156-160Search in Google Scholar

[18] Kondrateva O. E., et al. Dijavlenie klimaticheskih faktorov, vlijajuschih na nadezhnostj vozdushnih linij peredachi (Identification of climatic factors affecting the reliability of overhead lines). Proceedings of the Quality Management at the stages of the life cycle of technical and technological systems 2019:1:373–377. (in Russian)Search in Google Scholar

[19] Annex №1. Information about the technical position of the electrical grid OOO Bashkirenergo [Online]. [Accessed 20.11.2018]. Available: https://www.bashkir-energo.ru/consumers/standards-disclosure/Search in Google Scholar

[20] OOO “Bashkirenergo”. Prilozhenie 1. Svedenija o tehnicheskom sostojanii setej OOO “Bashkirenergo” (Annex №1. Information about the technical position of the electrical grid OOO Bashkirenergo) [Online]. [Accessed 20.11.2018]. Available: https://www.bashkir-energo.ru/consumers/standards-disclosure/arkhiv-dokumentov-utrativshikh-silu/Search in Google Scholar

[21] CIGRE. Guidelines for the management of risks associated with severe climate conditions and climate change in relation to air lines. Technical brochure. CIGRE, 2014:598.Search in Google Scholar

[22] Dupin R., Kariniotakis G., Michiorri A. Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment. International Journal of Electrical Power & Energy Systems 2019:110:565–578. https://doi.org/10.1016/j.ijepes.2019.03.04310.1016/j.ijepes.2019.03.043Search in Google Scholar

[23] Arab A., Tekin E., Khodaei A. System Hardening and Condition-Based Maintenance for Electric Power Infrastructure Under Hurricane Effects. IEEE Transactions on Reliability 2016:65:1457–1470. https://doi.org/10.1109/TR.2016.257544510.1109/TR.2016.2575445Search in Google Scholar

[24] Loktionov O. A., et al. Analysis of Dangerous Wind Loads Influence on 110–220 kV Power Grid Reliability in Yamalo-Nenets Autonomous District of Russian Federation. International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE) 2020:1–6. https://doi.org/10.1109/REEPE49198.2020.905920410.1109/REEPE49198.2020.9059204Search in Google Scholar

[25] Rezaei S. N., et al. Analysis of the effect of climate change on the reliability of overhead transmission lines. Sustainable Cities and Society 2016:27:137–144. https://doi.org/10.1016/j.scs.2016.01.00710.1016/j.scs.2016.01.007Search in Google Scholar

[26] IEEE. IEEE guide for electric power distribution reliability indices (IEEE Std. 136–2012). IEEE, 2012. http://doi.org/10.1109/IEEESTD.2012.620938110.1109/IEEESTD.2012.6209381Search in Google Scholar

[27] NERC Standard BAL-502-RF-03 «Planning Resource Adequacy Analysis, Assessment and Documentation» [Online]. [Accessed 10.03.2020]. Available: https://www.nerc.com/pa/Stand/Reliability%20Standards/BAL-502-RF-03.pdfSearch in Google Scholar

[28] Directive 2019/944/EU of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU. Official Journal of European Union 2019: L 158/125.Search in Google Scholar

[29] OOO Bashkirenergo. Production department [Online]. [Accessed 20.11.2018]. Available: https://www.bashkirenergo.ru/index.php (in Russian)Search in Google Scholar

[30] SP 20.13330.2016 Nagruzki I vozdejstvija. Aktualizirovannaja redakcija SNiP 2.01.07-85* (c Izmenenijami N 1, 2) (SP 20.13330.2016 Loads and impacts. The updated edition of SNiP 2.01.07-85* (with Amendments № 1, 2).). [Online]. [Accessed 25.11.2019]. Available: http://docs.cntd.ru/document/456044318 (in Russian)Search in Google Scholar

[31] Aguzarov A. V., et al. Raschet pokazatelej nadezhnosti elementov elektroenergeticheskoj sistemi naprjazheniem 110 kV (Calculation of reliability targets of elements of the electric power system with a voltage of 110 kV.). Energy and resource saving. Power supply. Unconventional and renewable energy sources. Atomic energy: materials of Danilov readings. 2018:52–55. (in Russian)Search in Google Scholar

[32] Uteuliev B. A., Tarasov A. G. Resurs opor vozdushnih linij elektroperedachi (Life time of overhead transmission line supports). Scientific Bulletin of NSTU 2015:59:89–97. https://doi.org/10.17212/1814-1196-2015-2-89-97 (in Russian)10.17212/1814-1196-2015-2-89-97Search in Google Scholar

[33] Saratov D. V. O podgotovke k prohozhdeniju OZP 2017-2018g. v elektricheskih setjah dochernih obschestv AO “BESK” (About the preparation for the autumn-winter period 2017–2018 in AO BESK). Bashkortostan: BESK, 2018. (in Russian)Search in Google Scholar

[34] Weather in Bashkortostan [Online]. [Accessed 20.11.2018]. Available: https://rp5.ru/Погодa_в_Бaшкоpтостaне (in Russian)Search in Google Scholar

[35] Klimenko V. V., Tereshin A. G., Fedotova E. V. Rost potenciala vozobnovljaemih istochnikov energii v Rossii v uslovijah globaljnogo poteplenija (Increase in renewable energy potential in Russia due to clobal warming). Scientific and technical Bulletin of SPBPU. Natural and engineering Sciences 2019:25:6–27. https://doi.org/10.18721/JEST.25301 (in Russian)Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other