Open Access

Cultivation of Algae Polyculture in Municipal Wastewater with CO2 Supply

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART II: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Chen H., Zhou D., Luo G., Zhang S., Chen J. Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews 2015:47:427–437. https://doi.org/10.1016/j.rser.2015.03.08610.1016/j.rser.2015.03.086Search in Google Scholar

[2] Gupta S. K., Malik A., Bux F. Algal Biofuels: Recent Advances and Future Prospects. Springer, 2017. https://doi.org/10.1007/978-3-319-51010-110.1007/978-3-319-51010-1Search in Google Scholar

[3] Righelato R., Spracklen D. V. Carbon mitigation by biofuels or by saving and restoring forests? Science 2007:317(5840):902. https://doi.org/10.1126/science.114136110.1126/science.114136117702929Search in Google Scholar

[4] Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P. Land clearing and the biofuel carbon debt. Science 2008:319(5867):1235–1238. https://doi.org/10.1126/science.115274710.1126/science.115274718258862Search in Google Scholar

[5] Lam M. K., Lee K. T., Mohamed A. R. Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control 2012:10:456–469. https://doi.org/10.1016/j.ijggc.2012.07.01010.1016/j.ijggc.2012.07.010Search in Google Scholar

[6] Sander K., Murthy G. S. Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assessment 2010:15(7):704–714. https://doi.org/10.1007/s11367-010-0194-110.1007/s11367-010-0194-1Search in Google Scholar

[7] Dasan Y. K., Lam M. K., Yusup S., Lim J. W., Lee K. T. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Science of the Total Environment 2019:688:112–128. https://doi.org/10.1016/j.scitotenv.2019.06.181.10.1016/j.scitotenv.2019.06.18131229809Search in Google Scholar

[8] Álvarez-Díaz P. D., Ruiz J., Arbib Z., Barragán J., Garrido-Pérez M. C., Perales J. A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006Search in Google Scholar

[9] Cuellar-Bermudez S. P., Garcia-Perez J. S., Rittmann B. E., Parra-Saldivar R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production 2015:98:53–65. https://doi.org/10.1016/j.jclepro.2014.03.03410.1016/j.jclepro.2014.03.034Search in Google Scholar

[10] Slade R., Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 2013:53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.01910.1016/j.biombioe.2012.12.019Search in Google Scholar

[11] Pires J. C. M., Alvim-Ferraz M. C. M., Martins F. G., Simões M. Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research 2013:20(8):5096–5105. https://doi.org/10.1007/s11356-013-1791-x10.1007/s11356-013-1791-x23673923Search in Google Scholar

[12] Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 2009:9(3):165–177. https://doi.org/10.1002/elsc.20090000310.1002/elsc.200900003Search in Google Scholar

[13] Cheah W. Y., Show P. L., Chang J.-S., Ling T. C., Juan J. C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 2014:184:190–201. https://doi.org/10.1016/j.biortech.2014.11.02610.1016/j.biortech.2014.11.02625497054Search in Google Scholar

[14] Chen C. Y., Yeh K. L., Aisyah R., Lee D. J., Chang J. S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011:102(1):71–81. https://doi.org/10.1016/j.biortech.2010.06.15910.1016/j.biortech.2010.06.15920674344Search in Google Scholar

[15] Mooij P. R., Stouten G. R., van Loosdrecht M. C. M., Kleerebezem R. Ecology-based selective environments as solution to contamination in microalgal cultivation. Current Opinion in Biotechnology 2015:33:46–51. https://doi.org/10.1016/j.copbio.2014.11.00110.1016/j.copbio.2014.11.00125445547Search in Google Scholar

[16] Smith V. H., Crews T. Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Research 2014:4:23–34. https://doi.org/10.1016/j.algal.2013.11.00510.1016/j.algal.2013.11.005Search in Google Scholar

[17] Bhola V., Swalaha F., Ranjith Kumar R., Singh M., Bux F. Overview of the potential of microalgae for CO2 sequestration. International Journal Environmental Science and Technology 2014:11(7):2103–2118. https://doi.org/10.1007/s13762-013-0487-610.1007/s13762-013-0487-6Search in Google Scholar

[18] Razzak S. A., Hossain M. M., Lucky R. A., Bassi A. S., de Lasa H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews 2013:27:622–653. https://doi.org/10.1016/j.rser.2013.05.06310.1016/j.rser.2013.05.063Search in Google Scholar

[19] Cheah W. Y., Ling T. C., Show P. L., Juan J. C., Chang J.-S., Lee D.-J. Cultivation in wastewaters for energy: A microalgae platform. Applied Energy 2016:179:609–625. https://doi.org/10.1016/j.apenergy.2016.07.01510.1016/j.apenergy.2016.07.015Search in Google Scholar

[20] Chew K. W. et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology 2017:229:53–62. https://doi.org/10.1016/j.biortech.2017.01.00610.1016/j.biortech.2017.01.00628107722Search in Google Scholar

[21] Ruiz J. et al. Towards industrial products from microalgae. Energy & Environmental Science 2016:9(10):3036–3043. https://doi.org/10.1039/C6EE01493C10.1039/C6EE01493CSearch in Google Scholar

[22] Olofsson M., Lindehoff E., Legrand C. Production stability and biomass quality in microalgal cultivation – Contribution of community dynamics. Engineering in Life Science 2019:19(5):330–340. https://doi.org/10.1002/elsc.20190001510.1002/elsc.201900015699922332625012Search in Google Scholar

[23] Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances 2011:29(6):686–702. https://doi.org/10.1016/j.biotechadv.2011.05.01510.1016/j.biotechadv.2011.05.01521664266Search in Google Scholar

[24] Liu R., Stanford R. L., Deng Y., Liu D., Liu Y., Yu S. L. The influence of extensive green roofs on rainwater runoff quality: a field-scale study in southwest China. Environmental Science and Pollution Research 2020:27:12932–12941. https://doi.org/10.1007/s11356-019-06151-510.1007/s11356-019-06151-531407262Search in Google Scholar

[25] Xie B. et al. Blending high concentration of anaerobic digestion effluent and rainwater for cost-effective Chlorella vulgaris cultivation in the photobioreactor. Chemical Engineering Journal 2019:360:861–865. https://doi.org/10.1016/j.cej.2018.12.009.10.1016/j.cej.2018.12.009Search in Google Scholar

[26] Nwoba E. G., Vadiveloo A., Ogbonna C. N., Ubi B. E., Ogbonna J. C., Moheimani N. R. Algal Cultivation for Treating Wastewater in African Developing Countries: A Review. Clean Soil, Air, Water 2020:48(3):2000052. https://doi.org/10.1016/j.biortech.2016.12.04410.1016/j.biortech.2016.12.04428012374Search in Google Scholar

[27] Kang W., Chai H. Assessment of runoff treatment operations with combined rainwater treatment system in the old city zone. Water Supply 2019:19(8):2507–2516. https://doi.org/10.2166/wcc.2019.17110.2166/wcc.2019.171Search in Google Scholar

[28] Ono E., Cuello J. L. Feasibility Assessment of Microalgal Carbon Dioxide Sequestration Technology with Photobioreactor and Solar Collector, Biosystem Engineering 2006:95(4):597–606. https://doi.org/10.1016/j.biosystemseng.2006.08.00510.1016/j.biosystemseng.2006.08.005Search in Google Scholar

[29] de Morais M. G., Costa J. A. V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology 2007:129(3):439–445. https://doi.org/10.1016/j.jbiotec.2007.01.00910.1016/j.jbiotec.2007.01.00917320994Search in Google Scholar

[30] Lara-gil J. A., Álvarez M. M., Pacheco A. Toxicity of flue gas components from cement plants in microalgae CO2 mitigation system. Journal of Applied Phycology 2014:357–368. https://doi.org/10.1007/s10811-013-0136-y10.1007/s10811-013-0136-ySearch in Google Scholar

[31] Sudhakar K., Suresh S., Premalatha M. An overview of CO2 mitigation using algae cultivation technology. International Journal of Chemical Research 2011:3(3):110–117. https://doi.org/10.9735/0975-3699.3.3.110-11710.9735/0975-3699.3.3.110-117Search in Google Scholar

[32] Da Rosa A. P. C., Carvalho L. F., Goldbeck L., Costa J. A. V. Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energy Conversion and Management 2011:52(8–9):3071–3073. https://doi.org/10.1016/j.enconman.2011.01.00810.1016/j.enconman.2011.01.008Search in Google Scholar

[33] Khozin-Goldberg A. S. I. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnology Letters 2013:1745–1752. https://doi.org/10.1007/s10529-013-1274-710.1007/s10529-013-1274-723801125Search in Google Scholar

[34] Roelke D. L. Applying principles of resource competition theory to microalgae biomass production: A more refined relationship between species richness and productivity. Algal Research 2017:25:431–438. https://doi.org/10.1016/j.algal.2017.06.00210.1016/j.algal.2017.06.002Search in Google Scholar

[35] Andersen R. A. Algal Culturing Techniques. Elsevier, Academic Press, 2005.Search in Google Scholar

[36] Myers J. Physiology of the Algae. Annual Review of Microbiology 1951:5:157–180. https://doi.org/10.1146/annurev.mi.05.100151.00110510.1146/annurev.mi.05.100151.00110512977130Search in Google Scholar

[37] Directive 91/271/EEC of the European Parliament and of the council concerning urban waste water treatment. Official Journal of the European Communities 1998:1881:1–5.Search in Google Scholar

[38] Giller P. Community structure and the niche. Springer, Science & Business Media, 2012.Search in Google Scholar

[39] Cardinale B. J. Biodiversity improves water quality through niche partitioning. Nature 2011:472(7341):86–89. https://doi.org/10.1038/nature0990410.1038/nature0990421475199Search in Google Scholar

[40] Litchman E., Edwards K. F., Klausmeier C. A., Thomas M. K. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Marine Ecology Progress Series 2012:470:235–248. https://doi.org/10.3354/meps0991210.3354/meps09912Search in Google Scholar

[41] Kazamia E., Aldridge D. C., Smith A. G. Synthetic ecology – A way forward for sustainable algal biofuel production? Journal of Biotechnology 2012:162(1):163–169. https://doi.org/10.1016/j.jbiotec.2012.03.02210.1016/j.jbiotec.2012.03.022Search in Google Scholar

[42] Varshney P., Mikulic P., Vonshak A., Beardall J., Wangikar P. P. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology 2015:184:363–372. https://doi.org/10.1016/j.biortech.2014.11.04010.1016/j.biortech.2014.11.04025443670Search in Google Scholar

[43] Pick U. Dunaliella—A Model Extremophilic Alga. Israel Journal of Plant Science 1998:46(2):131–139. https://doi.org/10.1080/07929978.1998.1067672010.1080/07929978.1998.10676720Search in Google Scholar

[44] Foflonker F. et al. The unexpected extremophile: Tolerance to fluctuating salinity in the green alga Picochlorum. Algal Research 2016:16:465–472. https://doi.org/10.1016/j.algal.2016.04.00310.1016/j.algal.2016.04.003Search in Google Scholar

[45] Ciniglia C., Yoon H. S. U., Pollio A., Pinto G., Bhattacharya D. Hidden biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology 2004:13(7):1827–1838. https://doi.org/10.1111/j.1365-294X.2004.02180.x10.1111/j.1365-294X.2004.02180.x15189206Search in Google Scholar

[46] Malavasi V., Soru S., Cao G. Extremophile Microalgae: the potential for biotechnological application. Journal of Phycology 2020:56(3):559–573. https://doi.org/10.1111/jpy.1296510.1111/jpy.1296531917871Search in Google Scholar

[47] Santos C. A., Reis A. Microalgal symbiosis in biotechnology. Applied Microbiology and Biotechnology 2014:98(13):5839–5846. https://doi.org/10.1007/s00253-014-5764-x10.1007/s00253-014-5764-x24816618Search in Google Scholar

[48] Shurin J. B. et al. Industrial-strength ecology: Trade-offs and opportunities in algal biofuel production. Ecol. Lett., 2013:16(11):1393–1404. https://doi.org/10.1111/ele.1217610.1111/ele.1217624015819Search in Google Scholar

[49] Mandal S., Shurin J. B., Efroymson R. A., Mathews T. J. Functional divergence in nitrogen uptake rates explains diversity–productivity relation ship in microalgal communities. Ecosphere 2018:9(5):e0228. https://doi.org/10.1002/ecs2.222810.1002/ecs2.2228Search in Google Scholar

[50] Gonçalves A. L., Pires J. C. M., Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Research 2017:24:403–415. https://doi.org/10.1016/j.algal.2016.11.00810.1016/j.algal.2016.11.008Search in Google Scholar

[51] Ryan Georgianna D., Mayfield S. P. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 2012:488(7411):329–335. https://doi.org/10.1038/nature1147910.1038/nature1147922895338Search in Google Scholar

[52] Goers L., Freemont P., Polizzi K. M. Co-culture systems and technologies: Taking synthetic biology to the next level. Journal of the Royal Society Interface 2014:11(96). https://doi.org/10.1098/rsif.2014.006510.1098/rsif.2014.0065403252824829281Search in Google Scholar

[53] Su Y., Mennerich A., Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research 2011:45(11):3351–3358. https://doi.org/10.1016/j.watres.2011.03.04610.1016/j.watres.2011.03.04621513965Search in Google Scholar

[54] Wang L. et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology 2010:162(4):1174–1186. https://doi.org/10.1007/s12010-009-8866-710.1007/s12010-009-8866-719937154Search in Google Scholar

[55] Candido J. P., Andrade S. J., Fonseca A. L., Silva F. S., Silva M. R. A., Kondo M. M. Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environmental Science and Pollution Research 2016:23(19):19911–19920. https://doi.org/10.1007/s11356-016-6947-z10.1007/s11356-016-6947-z27424204Search in Google Scholar

[56] Nogueira P. F. M., Nakabayashi D., Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquatic Toxicoloy 2015:166:29–35. https://doi.org/10.1016/j.aquatox.2015.07.00110.1016/j.aquatox.2015.07.00126204245Search in Google Scholar

[57] Nogueira V. et al. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ. Science and Pollution Research 2015:22(17):13212–13224. https://doi.org/10.1007/s11356-015-4581-910.1007/s11356-015-4581-925940480Search in Google Scholar

[58] Santos J. I. et al. Environmental safety of cholinium-based ionic liquids: assessing structure–ecotoxicity relationships. Green Chem., 2015:17(9):4657–4668. https://doi.org/10.1039/C5GC01129A10.1039/C5GC01129ASearch in Google Scholar

[59] Simis S. G. H., Huot Y., Babin M., Seppälä J., Metsamaa L. Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria. Photosynthesis Research 2012:112(1):13–30. https://doi.org/10.1007/s11120-012-9729-610.1007/s11120-012-9729-6332469122403036Search in Google Scholar

[60] Cheunbarn S., Peerapornpisal Y. Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int. J. Agric. Biol., 2010:12(4):586–590.Search in Google Scholar

[61] Mezzomo N. et al. Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater. Ciência e Tecnol. Aliment. 2010:30(1):173–178. https://doi.org/10.1590/S0101-2061201000010002610.1590/S0101-20612010000100026Search in Google Scholar

[62] Markou G., Chatzipavlidis I., Georgakakis D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology 2012:112:234–241. https://doi.org/10.1016/j.biortech.2012.02.09810.1016/j.biortech.2012.02.09822425515Search in Google Scholar

[63] Martins J., Peixe L., Vasconcelos V. M. Unraveling Cyanobacteria Ecology in Wastewater Treatment Plants (WWTP). Microbial Ecology 2011:62(2):241–256. https://doi.org/10.1007/s00248-011-9806-y10.1007/s00248-011-9806-y21287346Search in Google Scholar

[64] Nath A., Dixit K., Sundaram S. Developing Designer Microalgae Consortia: A Suitable Approach to Sustainable Wastewater Treatment. In Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment, S. K. Gupta and F. Bux, Eds. Cham: Springer International Publishing, 2019:57–80. https://doi.org/10.1007/978-3-030-13913-1_410.1007/978-3-030-13913-1_4Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other