Open Access

Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART I: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Brennan L., Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and. Sustainable Energy Reviews 2010:14:(2):557–577. https://doi.org/10.1016/j.rser.2009.10.00910.1016/j.rser.2009.10.009Search in Google Scholar

[2] Safi C., Zebib B., Merah O., Pontalier P. Y., Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 2014:35:265–278. https://doi.org/10.1016/j.rser.2014.04.00710.1016/j.rser.2014.04.007Search in Google Scholar

[3] Amer L., Adhikari B., Pellegrino J. Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity. Bioresource Technology 2011:102(20):9350–9359. https://doi.org/10.1016/j.biortech.2011.08.01010.1016/j.biortech.2011.08.01021875787Search in Google Scholar

[4] Barsanti L., Gualtieri P. Is exploitation of microalgae economically and energetically sustainable. Algal Research 2017:31:107–115. https://doi.org/10.1016/j.algal.2018.02.00110.1016/j.algal.2018.02.001Search in Google Scholar

[5] Davis R., Aden A., Pienkos P. T. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy 2011:88(10):3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.01810.1016/j.apenergy.2011.04.018Search in Google Scholar

[6] Smith V. H., Sturm B. S. M., deNoyelles F. J., Billings S. A. The ecology of algal biodiesel production. Trends in Ecology and Evolution 2010:25(5):301–309. https://doi.org/10.1016/j.tree.2009.11.00710.1016/j.tree.2009.11.00720022660Search in Google Scholar

[7] Chiaramonti D. et al. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy 2013:102:101–111. https://doi.org/10.1016/j.apenergy.2012.07.04010.1016/j.apenergy.2012.07.040Search in Google Scholar

[8] Chew K. W. et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology 2017:229:53–62. https://doi.org/10.1016/j.biortech.2017.01.00610.1016/j.biortech.2017.01.00628107722Search in Google Scholar

[9] Koutra E., Economou C. N., Tsafrakidou P., Kornaros M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends in Biotechnology 2018:36(8):819–833. https://doi.org/10.1016/j.tibtech.2018.02.01510.1016/j.tibtech.2018.02.01529605178Search in Google Scholar

[10] Guiry M. D. How many species of algae are there? Journal of Phycology 2012:48(5):1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x10.1111/j.1529-8817.2012.01222.x27011267Search in Google Scholar

[11] Borowitzka M. A., Moheimani N. R. (Eds.) Algae for Biofuels and Energy. Springer, 2013. https://doi.org/10.1007/978-94-007-5479-910.1007/978-94-007-5479-9Search in Google Scholar

[12] Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Blackwell Science, 2004.Search in Google Scholar

[13] Iwamoto H. Industrial Production of Microalgal Cell-mass and Secondary Products – Major Industrial Species. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, A. Richmond, Ed. Blackwell Science, 2004, pp. 255–263.10.1002/9780470995280.ch11Search in Google Scholar

[14] Champenois J., Marfaing H., Pierre R. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. Journal of Applied Phycology 2015:27(5):1845–1851. https://doi.org/10.1007/s10811-014-0431-210.1007/s10811-014-0431-2Search in Google Scholar

[15] Zhou W., Li Y., Min M., Hu B., Chen P., Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology 2011:102(13):6909–6919. https://doi.org/10.1016/j.biortech.2011.04.03810.1016/j.biortech.2011.04.03821546246Search in Google Scholar

[16] Maxwell D. P., Falk S., Trick C. G., Huner N. P. A. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiology 1994:105(2):535–543. https://doi.org/10.1104/pp.105.2.53510.1104/pp.105.2.53515939112232221Search in Google Scholar

[17] Kessler E. Upper limits of temperature for growth in Chlorella (Chlorophyceae). Plant Systematics and Evolution 1985:151(1–2):67–71. https://doi.org/10.1007/BF0241802010.1007/BF02418020Search in Google Scholar

[18] Michael A. Borowitzka. Species and Strain Selection. In Algae for Biofuels and Energy Ed. Springer, 2013, pp. 76–89. https://doi.org/10.1007/978-94-007-5479-9_410.1007/978-94-007-5479-9_4Search in Google Scholar

[19] Liu J., Sun Z., Gerken H., Liu Z., Jiang Y., Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs 2014:12(6):3487–3515. https://doi.org/10.3390/md1206348710.3390/md12063487407158824918452Search in Google Scholar

[20] Huss V. A. R. et al. Biochemical Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta). Journal Phycology 1999:35(3):587–598. https://doi.org/10.1046/j.1529-8817.1999.3530587.x10.1046/j.1529-8817.1999.3530587.xSearch in Google Scholar

[21] Kumar K., Mishra S. K., Shrivastav A., Park M. S., Yang J. W. Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews 2015:51:875–885. https://doi.org/10.1016/j.rser.2015.06.03310.1016/j.rser.2015.06.033Search in Google Scholar

[22] Krienitz L., Hegewald E. H., Hepperle D., Huss V. A. R., Rohr T., Wolf M. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 2004:43(5):529–542. https://doi.org/10.2216/i0031-8884-43-5-529.110.2216/i0031-8884-43-5-529.1Search in Google Scholar

[23] Bock C., Krienitz L., Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 2011:11(2):293–312. https://doi.org/10.5507/fot.2011.02810.5507/fot.2011.028Search in Google Scholar

[24] Krienitz L., Huss V. A. R., Bock C. Chlorella: 125 years of the green survivalist. Trends in Plant Science 2015:20(2):67–69. https://doi.org/10.1016/j.tplants.2014.11.00510.1016/j.tplants.2014.11.005Search in Google Scholar

[25] Kessler E., Huss V. A. R. Comparative Physiology and Biochemistry and Taxonomic Assignment of the Chlorella (Chlorophyceae) Strains of the Culture Collection of the University of Texas at Austin. Journal of Phycology 1992:28(4):550–553. https://doi.org/10.1111/j.0022-3646.1992.00550.x10.1111/j.0022-3646.1992.00550.xSearch in Google Scholar

[26] Santhoshkumar K., Prasanthkumar S., George Ray J. Biomass Productivity and Fatty Acid Composition of Chlorella lobophora V M Andreyeva, a Potential Feed Stock for Biodiesel Production. American Journal of Plant Science 2015:6(15):2453–2460. https://doi.org/10.4236/ajps.2015.61524710.4236/ajps.2015.615247Search in Google Scholar

[27] Santhosh Kumar K., Prasanthkumar S., Ray J. G. Biomass yield, oil productivity and fatty acid profile of Chlorella lobophora cultivated in diverse eutrophic wastewaters. Biocatalysis and Agricultural Biotechnology 2017:11:338–344. https://doi.org/10.1016/j.bcab.2017.08.00610.1016/j.bcab.2017.08.006Search in Google Scholar

[28] Bhalamurugan G. L., Valerie O., Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research 2018:23(3):229–241. https://doi.org/10.4491/eer.2017.22010.4491/eer.2017.220Search in Google Scholar

[29] Mobin S., Alam F. Some Promising Microalgal Species for Commercial Applications: A review. Energy Procedia, 2017:110:510–517. https://doi.org/10.1016/j.egypro.2017.03.17710.1016/j.egypro.2017.03.177Search in Google Scholar

[30] Becker E. W. Micro-algae as a source of protein. Biotechnology Advances 2007:25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.00210.1016/j.biotechadv.2006.11.002Search in Google Scholar

[31] Tan C. H. et al. Examination of indigenous microalgal species for maximal protein synthesis. Biochemical Engineering Journal 2020:154:107425. https://doi.org/10.1016/j.bej.2019.10742510.1016/j.bej.2019.107425Search in Google Scholar

[32] Atsushi Hirano Y. O., Ueda R., Hirayama S. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997:22(2–3):137–142. https://doi.org/10.1016/S0360-5442(96)00123-510.1016/S0360-5442(96)00123-5Search in Google Scholar

[33] Mizuno Y. et al. Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresource Technology 2013:129:150–155. https://doi.org/10.1016/j.biortech.2012.11.03010.1016/j.biortech.2012.11.03023238344Search in Google Scholar

[34] Deviram G., Mathimani T. Anto S., Ahamed T. S., Ananth D. A., Pugazhendhi A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. Journal of Cleaner Production 2020:253:119770. https://doi.org/10.1016/j.jclepro.2019.11977010.1016/j.jclepro.2019.119770Search in Google Scholar

[35] Othman R., Noh N. H., Hatta F. A. M., Jamaludin M. A. Natural Carotenoid Pigments of 6 Chlorophyta Freshwater Green Algae Species. Lifescience Global 2018:1–5. https://doi.org/10.6000/1927-5951.2018.08.01.110.6000/1927-5951.2018.08.01.1Search in Google Scholar

[36] Fernández-Sevilla J. M., Acién Fernández F. G., Molina Grima E. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 2010:86(1):27–40. https://doi.org/10.1007/s00253-009-2420-y10.1007/s00253-009-2420-y20091305Search in Google Scholar

[37] D’Este M., De Francisci D., Angelidaki I. Novel protocol for lutein extraction from microalga Chlorella vulgaris. Biochemical Engineering Journal 2017:127:175–179. https://doi.org/10.1016/j.bej.2017.06.01910.1016/j.bej.2017.06.019Search in Google Scholar

[38] Chen C. Y., Liu C. C. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresource Technology 2018:262:74–79. https://doi.org/10.1016/j.biortech.2018.04.02410.1016/j.biortech.2018.04.02429698840Search in Google Scholar

[39] Wei D., Chen F., Chen G., Zhang X. W., Liu L. J., Zhang H. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science in China Series C: Life Sciences 2008:51(12):1088–1093. https://doi.org/10.1007/s11427-008-0145-210.1007/s11427-008-0145-219093082Search in Google Scholar

[40] Dineshkumar R., Subramanian G., Dash S. K., Sen R. Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochemical Engineering Journal 2016:113:47–56. https://doi.org/10.1016/j.bej.2016.05.01110.1016/j.bej.2016.05.011Search in Google Scholar

[41] McClure D. D., Nightingale J. K., Luiz A., Black S., Zhu J., Kavanagh J. M. Pilot-scale production of lutein using Chlorella vulgaris. Algal Research 2019:44:101707. https://doi.org/10.1016/j.algal.2019.10170710.1016/j.algal.2019.101707Search in Google Scholar

[42] Lin J. H., Lee D. J., Chang J. S. Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology 2015:184:421–428, 2015. https://doi.org/10.1016/j.biortech.2014.09.09910.1016/j.biortech.2014.09.09925446782Search in Google Scholar

[43] Barkia I., Saari N., Manning S. R. Microalgae for high-value products towards human health and nutrition. Marine Drugs 2019:17(5):1–29. https://doi.org/10.3390/md1705030410.3390/md17050304656250531137657Search in Google Scholar

[44] Wang X., Zhang X. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress 2013:29(3):681–687. https://doi.org/10.1002/btpr.172510.1002/btpr.172523606619Search in Google Scholar

[45] Cai T., Park S. Y., Li Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews 2013:19:360–369. https://doi.org/10.1016/j.rser.2012.11.03010.1016/j.rser.2012.11.030Search in Google Scholar

[46] Abdel-Raouf N., Al-Homaidan A. A., Ibraheem I. B. M. Microalgae and wastewater treatment. Saudi Journal of Biologial Sciences 2012:19(3):257–275. https://doi.org/10.1016/j.sjbs.2012.04.00510.1016/j.sjbs.2012.04.005405256724936135Search in Google Scholar

[47] Lowrey J., Brooks M. S., McGinn P. J. Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. Journal of Applied Phycology 2015:27(4):1485–1498. https://doi.org/10.1007/s10811-014-0459-310.1007/s10811-014-0459-3Search in Google Scholar

[48] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology 2011:102(23):10861–10867. https://doi.org/10.1016/j.biortech.2011.09.06410.1016/j.biortech.2011.09.06421982450Search in Google Scholar

[49] Kim S., eun Park J., Cho Y. B., Hwang S. J. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technology 2013:144:8–13. https://doi.org/10.1016/j.biortech.2013.06.06810.1016/j.biortech.2013.06.06823850820Search in Google Scholar

[50] Scarsella M., Belotti G., De Filippis P., Bravi M. Study on the optimal growing conditions of Chlorella vulgaris in bubble column photobioreactors. Chem. Eng. Trans 2010:20:85–90.Search in Google Scholar

[51] Babaei A., Mehrnia M. R., Shayegan J., Sarrafzadeh M. H., Amini E. Evaluation of Nutrient Removal and Biomass Production Through Mixotrophic, Heterotrophic, and Photoautotrophic Cultivation of Chlorella in Nitrate and Ammonium Wastewater. International Journal of Environmental Research 2018:12(2):167–178. https://doi.org/10.1007/s41742-018-0077-z10.1007/s41742-018-0077-zSearch in Google Scholar

[52] Sharma A. K., Sahoo P. K., Singhal S., Patel A. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 2016:6(2):1–12. https://doi.org/10.1007/s13205-016-0434-610.1007/s13205-016-0434-6490902028330202Search in Google Scholar

[53] Palmer C. M. A composite rating of algae tolerating organic pollution. Journal of Phycology 1969:5(1):78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x10.1111/j.1529-8817.1969.tb02581.x27097257Search in Google Scholar

[54] Wang L. et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 2010:101(8):2623–2628. https://doi.org/10.1016/j.biortech.2009.10.06210.1016/j.biortech.2009.10.06219932957Search in Google Scholar

[55] Caporgno M. P. et al. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research 2015:10:232–239. https://doi.org/10.1016/j.algal.2015.05.01110.1016/j.algal.2015.05.011Search in Google Scholar

[56] Franchino M., Comino E., Bona F., Riggio V. A. Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 2013:92(6):738–744. https://doi.org/10.1016/j.chemosphere.2013.04.02310.1016/j.chemosphere.2013.04.02323706373Search in Google Scholar

[57] Oberholster P. J., Cheng P. H., Genthe B., Steyn M. The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure in rural areas of SADC countries. Journal of Applied Phycology 2019:31(1):355–363. https://doi.org/10.1007/s10811-018-1554-710.1007/s10811-018-1554-7Search in Google Scholar

[58] Palmer C. M. Algae in american sewage stabilization’s ponds. Rev. Microbiol. 1974:5(4):75–80.Search in Google Scholar

[59] Ayre J. M., Moheimani N. R., Borowitzka M. A. Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research 2017:24:218–226. https://doi.org/10.1016/j.algal.2017.03.02310.1016/j.algal.2017.03.023Search in Google Scholar

[60] Álvarez-Díaz P. D., Ruiz J., Arbib Z., Barragán J., Garrido-Pérez M. C., Perales J. A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006Search in Google Scholar

[61] Chinnasamy S., Bhatnagar A., Hunt R. W., Das K. C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology 2010:101(9):3097–3105. https://doi.org/10.1016/j.biortech.2009.12.02610.1016/j.biortech.2009.12.02620053551Search in Google Scholar

[62] Mata T. M., Martins A. A., Caetano N. S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews 2010:14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.02010.1016/j.rser.2009.07.020Search in Google Scholar

[63] Xiong W., Li X., Xiang J., Wu Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology 2008:78(1):29–36. https://doi.org/10.1007/s00253-007-1285-110.1007/s00253-007-1285-118064453Search in Google Scholar

[64] Tang H., Chen M., Garcia M. E. D., Abunasser N., Ng K. Y. S., Salley S. O. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnology and Bioengineering 2011:108(10):2280–2287. https://doi.org/10.1002/bit.2316010.1002/bit.2316021495011Search in Google Scholar

[65] Illman A. M., Scragg A. H., Shales S. W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 2000:27(8):631–635. https://doi.org/10.1016/S0141-0229(00)00266-010.1016/S0141-0229(00)00266-0Search in Google Scholar

[66] dos Santos R. R., Kunigami C. N., Gomes Aranda D. A., Luz Lapa Teixeira C. M. Assessment of triacylglycerol content in Chlorella vulgaris cultivated in a two-stage process. Biomass and Bioenergy 2016:92:55–60. https://doi.org/10.1016/j.biombioe.2016.05.01410.1016/j.biombioe.2016.05.014Search in Google Scholar

[67] Serra-Maia R., Bernard O., Gonçalves A., Bensalem S., Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research 2016:18:352–359. https://doi.org/10.1016/j.algal.2016.06.01610.1016/j.algal.2016.06.016Search in Google Scholar

[68] Bhola V., Desikan R., Santosh S. K., Subburamu K., Sanniyasi E., Bux F. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering 2011:111(3):377–382. https://doi.org/10.1016/j.jbiosc.2010.11.00610.1016/j.jbiosc.2010.11.00621185776Search in Google Scholar

[69] Gong Q., Feng Y., Kang L., Luo M., Yang J. Effects of light and pH on cell density of Chlorella vulgaris. Energy Procedia 2014:61:2012–2015. https://doi.org/10.1016/j.egypro.2014.12.06410.1016/j.egypro.2014.12.064Search in Google Scholar

[70] Rai U., Deshar G., Rai B., Bhattarai K., Dhakal R., Rai S. Isolation and Culture Condition Optimization of Chlorella vulgaris. Nepal Journal of Science and Technology 2014:14(2):43–48. https://doi.org/10.3126/njst.v14i2.1041410.3126/njst.v14i2.10414Search in Google Scholar

[71] Kwon G., Nam J.-H., Kim D.-M., Song C., Jahng D. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research 2020:25(2):135–146. https://doi.org/10.4491/eer.2018.44210.4491/eer.2018.442Search in Google Scholar

[72] Yu H., Kim J., Lee C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports 2019:9(1):1–13. https://doi.org/10.1038/s41598-019-42521-210.1038/s41598-019-42521-2646787830992470Search in Google Scholar

[73] Molazadeh M., Ahmadzadeh H., Pourianfar H. R., Lyon S., Rampelotto P. H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology 2019:7. https://doi.org/10.3389/fbioe.2019.0004210.3389/fbioe.2019.00042643378230941348Search in Google Scholar

[74] de-Bashan L. E., Trejo A., Huss V. A. R., Hernandez J. P., Bashan Y. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology 2008:99(11):4980–4989. https://doi.org/10.1016/j.biortech.2007.09.06510.1016/j.biortech.2007.09.06518024023Search in Google Scholar

[75] Li S., Luo S., Guo R. Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology 2013:136:267–272. https://doi.org/10.1016/j.biortech.2013.03.02510.1016/j.biortech.2013.03.025Search in Google Scholar

[76] Kumar K., Dasgupta C. N., Das D. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresource Technology 2014:167:358–366. https://doi.org/10.1016/j.biortech.2014.05.11810.1016/j.biortech.2014.05.118Search in Google Scholar

[77] Morita M., Watanabe Y., Saiki A. H. High photosynthetic productivity of green microalga Chlorella sorokiniana. Applied Biochemistry and Biotechnology 2000:87:203–218. https://doi.org/10.1385/ABAB:87:3:20310.1385/ABAB:87:3:203Search in Google Scholar

[78] Lammers P. J. et al. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research 2017:22:166–186. https://doi.org/10.1016/j.algal.2016.11.02110.1016/j.algal.2016.11.021Search in Google Scholar

[79] Franco M. C., Buffing M. F., Janssen M., Lobato C. V., Wijffels R. H. Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology 2012:24(4):693–699. https://doi.org/10.1007/s10811-011-9687-y10.1007/s10811-011-9687-y339250322993457Search in Google Scholar

[80] Li T., Zheng Y., Yu L., Chen S. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource Technology 2013:131:60–67. https://doi.org/10.1016/j.biortech.2012.11.12110.1016/j.biortech.2012.11.12123340103Search in Google Scholar

[81] Park J. B. K., Craggs R. J., Shilton A. N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology 2011:102(1):35–42. https://doi.org/10.1016/j.biortech.2010.06.15810.1016/j.biortech.2010.06.15820674341Search in Google Scholar

[82] Murwanashyaka T., Shen L., Ndayambaje J. D., Wang Y., He N., Lu Y. Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters. Algal Research 2017:24:467–476. https://doi.org/10.1016/j.algal.2016.08.00210.1016/j.algal.2016.08.002Search in Google Scholar

[83] Li T., Zheng Y., Yu L., Chen S. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy 2014:66:204–213. https://doi.org/10.1016/j.biombioe.2014.04.01010.1016/j.biombioe.2014.04.010Search in Google Scholar

[84] Rosenberg J. N., Kobayashi N., Barnes A., Noel E. A., Betenbaugh M. J., Oyler G. A. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 2014:9(4). https://doi.org/10.1371/journal.pone.009246010.1371/journal.pone.0092460397468224699196Search in Google Scholar

[85] Ribeiro J. E. S. et al. Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate. Biocatalysis and Agricultural Biotechnology 2017:11:207–213. https://doi.org/10.1016/j.bcab.2017.07.00710.1016/j.bcab.2017.07.007Search in Google Scholar

[86] Feng X., Walker T. H., Bridges W. C., Thornton C., Gopalakrishnan K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresource Technology 2014:166:17–23. https://doi.org/10.1016/j.biortech.2014.03.12010.1016/j.biortech.2014.03.12024880808Search in Google Scholar

[87] Shi X. M., Chen F., Yuan J. P., Chen H. Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology 1997:9(5):445–450. https://doi.org/10.1023/A:100793821565510.1023/A:1007938215655Search in Google Scholar

[88] Xiufeng Li Q. W., Han Xu. Large-Scale Biodiesel Production From Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering 2007:98(4):764–771. https://doi.org/10.1002/bit.2148910.1002/bit.2148917497732Search in Google Scholar

[89] Shi X. M., Jiang Y., Chen F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress 2002:18(4):723–727. https://doi.org/10.1021/bp010198710.1021/bp010198712153304Search in Google Scholar

[90] Ramos Tercero E. A., Sforza E., Morandini M., Bertucco A. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass productivity and nutrient removal. Applied Biochemistry and Biotechnology 2014:172(3):1470–1485. https://doi.org/10.1007/s12010-013-0629-910.1007/s12010-013-0629-924222500Search in Google Scholar

[91] Hayashi T., Otaki R., Hirai K., Tsuzuki M., Sato N. Optimization of seawater-based triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, through simultaneous imposition of lowered-temperature and enhanced-light intensity. Algal Research 2017:28:100–107. https://doi.org/10.1016/j.algal.2017.10.01610.1016/j.algal.2017.10.016Search in Google Scholar

[92] Wang Y., Chen T., Qin S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. Chemical Technology and Biotechnology 2013:88(4):651–657. https://doi.org/10.1002/jctb.388110.1002/jctb.3881Search in Google Scholar

[93] Soares A. T., da Costa D. C., Vieira A. A. H., Antoniosi Filho N. R. Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 2019. https://doi.org/10.1016/j.heliyon.2019.e0152910.1016/j.heliyon.2019.e01529648420731049438Search in Google Scholar

[94] Liu Y., Lv J., Feng J., Liu Q., Nan F., Xie S. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Chemical Technology and Biotechnology 2019:94(3):900–910. https://doi.org/10.1002/jctb.583710.1002/jctb.5837Search in Google Scholar

[95] Bhatnagar A., Bhatnagar M., Chinnasamy S., Das K. C. Chlorella minutissima – A promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology 2010:161(1–8):523–536. https://doi.org/10.1007/s12010-009-8771-010.1007/s12010-009-8771-019882116Search in Google Scholar

[96] Gautam K., Pareek A., Sharma D. K. Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. Journal of Bioscience and Bioengineering 2013:116(5):624–627. https://doi.org/10.1016/j.jbiosc.2013.05.01410.1016/j.jbiosc.2013.05.01423768469Search in Google Scholar

[97] Li Z. S., Yuan H. L., Yang J. S., Li B. Z. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresource Technology 2011:102(19):9128–9134. https://doi.org/10.1016/j.biortech.2011.07.00410.1016/j.biortech.2011.07.00421803576Search in Google Scholar

[98] Daliry S., Hallajisani A., Roshandeh J. M., Nouri H., Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob. J. Environ. Sci. Manag. 2017:3(2):217–230.Search in Google Scholar

[99] Sharma R. Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella Vulgaris. Journal of Plant Pathology & Microbiology 2012:3(5). https://doi.org/10.4172/2157-7471.100013110.4172/2157-7471.1000131Search in Google Scholar

[100] Chen Z., Zhang X., Jiang Z., Chen X., He H., Zhang X. Light/dark cycle of microalgae cells in raceway ponds: Effects of paddlewheel rotational speeds and baffles installation. Bioresource Technology 2016:219:387–391. https://doi.org/10.1016/j.biortech.2016.07.10810.1016/j.biortech.2016.07.10827504995Search in Google Scholar

[101] Zheng Y., Li T., Yu X., Bates P. D., Dong T., Chen S. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy 2013:108:281–287. https://doi.org/10.1016/j.apenergy.2013.02.05910.1016/j.apenergy.2013.02.059Search in Google Scholar

[102] Qiu R., Gao S., Lopez P. A., Ogden K. L. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research 2017:28:192–199. https://doi.org/10.1016/j.algal.2017.11.00410.1016/j.algal.2017.11.004Search in Google Scholar

[103] Ramsundar P., Guldhe A., Singh P., Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology 2017:227:82–92. https://doi.org/10.1016/j.biortech.2016.12.03710.1016/j.biortech.2016.12.03728013140Search in Google Scholar

[104] Khalid A. A. H., Yaakob Z., Abdullah S. R. S., Takriff M. S. Growth improvement and metabolic profiling of native and commercial Chlorella sorokiniana strains acclimatized in recycled agricultural wastewater. Bioresource Technology 2018:247:930–939. https://doi.org/10.1016/j.biortech.2017.09.19510.1016/j.biortech.2017.09.19530060432Search in Google Scholar

[105] Patel A. K., Joun J. M., Hong M. E., Sim S. J. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresource Technology 2019:282:245–253. https://doi.org/10.1016/j.biortech.2019.03.02410.1016/j.biortech.2019.03.02430870690Search in Google Scholar

[106] Li Y., Zhou W., Hu B., Min M., Chen P., Ruan R. R. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering 2012:109(9):2222–2229. https://doi.org/10.1002/bit.2449110.1002/bit.2449122407758Search in Google Scholar

[107] Ördög V. et al. Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Research 2016:16:141–149. https://doi.org/10.1016/j.algal.2016.03.00110.1016/j.algal.2016.03.001Search in Google Scholar

[108] Juneja A., Ceballos R. M., Murthy G. S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 2013:6(9):4607–4638. https://doi.org/10.3390/en609460710.3390/en6094607Search in Google Scholar

[109] Lv J. M., Cheng L. H., Xu X. H., Zhang L., Chen H. L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 2010:101(17):6797–6804. https://doi.org/10.1016/j.biortech.2010.03.12010.1016/j.biortech.2010.03.12020456951Search in Google Scholar

[110] Fu W., Gudmundsson O., Feist A. M., Herjolfsson G., Brynjolfsson S., Palsson B. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. Journal of Biotechnology 2012:161(3):242–249. https://doi.org/10.1016/j.jbiotec.2012.07.00410.1016/j.jbiotec.2012.07.00422796827Search in Google Scholar

[111] Kobayashi N. et al. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology 2013:150:377–386. https://doi.org/10.1016/j.biortech.2013.10.03210.1016/j.biortech.2013.10.03224185420Search in Google Scholar

[112] Deng X. Y. et al. Glucose addition-induced changes in the growth and chemical compositions of a freshwater microalga Chlorella kessleri. Chemical Technology and Biotechnology 2019:94(4):1202–1209. https://doi.org/10.1002/jctb.587010.1002/jctb.5870Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other