Open Access

Novel Stacked Modular Open Raceway Ponds for Microalgae Biomass Cultivation in Biogas Plants: Preliminary Design and Modelling

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART I: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Lee E., Jalalizadeh M., Zhang Q. Growth kinetic models for microalgae cultivation: A review. Algal Research 2015:12:497–512. https://doi.org/10.1016/j.algal.2015.10.00410.1016/j.algal.2015.10.004Search in Google Scholar

[2] Caporgno M. P., et al. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research 2015:10:232–239. https://doi.org/10.1016/j.algal.2015.05.01110.1016/j.algal.2015.05.011Search in Google Scholar

[3] De Morais M. G., Costa J. A. V. Biofixation of carbon dioxide by Spirulina sp. And Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology 2007:129(3):439–445. https://doi.org/10.1016/j.jbiotec.2007.01.00910.1016/j.jbiotec.2007.01.009Search in Google Scholar

[4] Hsueh H., Li W., Chen H., Chu H. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis occulta. Journal of Photochemistry and Photobiology B: Biology 2009:95(1):33–39. https://doi.org/10.1016/j.jphotobiol.2008.11.01010.1016/j.jphotobiol.2008.11.010Search in Google Scholar

[5] Lam M. K., Lee K. T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 2012:30:673–90. https://doi.org/10.1016/j.biotechadv.2011.11.00810.1016/j.biotechadv.2011.11.008Search in Google Scholar

[6] McKendry P. Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology 2002:83(1):37–46. https://doi.org/10.1016/S0960-8524(01)00118-310.1016/S0960-8524(01)00118-3Search in Google Scholar

[7] Kröger M., Müller-Langer F. Review on possible algal-biofuel production processes. Biofuels 2012:3(3):333–49. https://doi.org/10.4155/bfs.12.1410.4155/bfs.12.14Search in Google Scholar

[8] Jankowska E., Sahu A. K., Oleskowicz-Popiel P. Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews 2017:75:692–709. https://doi.org/10.1016/j.rser.2016.11.04510.1016/j.rser.2016.11.045Search in Google Scholar

[9] Saharan B. S., et al. Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 2013:12:1–21.Search in Google Scholar

[10] Marazzi F., et al. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.10143010.1016/j.algal.2019.101430Search in Google Scholar

[11] Hernández D., et al. Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chemical Engineering Journal 2016:285:449–458. https://doi.org/10.1016/j.cej.2015.09.07210.1016/j.cej.2015.09.072Search in Google Scholar

[12] Sahua A. K., Siljudalen J., Trydal T., Rusten B. Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. Journal of Environmental Management 2013:122:113–120. https://doi.org/10.1016/j.jenvman.2013.02.03810.1016/j.jenvman.2013.02.03823570973Search in Google Scholar

[13] Sepùlveda C., et al. Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Research 2015:9:107–116. https://doi.org/10.1016/j.algal.2015.03.00410.1016/j.algal.2015.03.004Search in Google Scholar

[14] Ramanna L., Guldhe A., Rawat I., Bux F. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology 2014:168:127–135. https://doi.org/10.1016/j.biortech.2014.03.06410.1016/j.biortech.2014.03.06424768415Search in Google Scholar

[15] Romero-Villegas G. I., et al. Fiamengo M., Acién-Fernández F. G., Molina-Grima E. Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management 2018:228:506–516. https://doi.org/10.1016/j.jenvman.2018.08.02010.1016/j.jenvman.2018.08.02030273769Search in Google Scholar

[16] Arcila J. S., Buitrón G. Microalgae-bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology 2016:91:2862–2870. https://doi.org/10.1002/jctb.490110.1002/jctb.4901Search in Google Scholar

[17] del Mar Morales-Amaral M., et al. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Research 2015:9:297–305. https://doi.org/10.1016/j.algal.2015.03.01810.1016/j.algal.2015.03.018Search in Google Scholar

[18] Cai T., Park S. Y., Racharaks R., Li Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy 2013:108:486–492. https://doi.org/10.1016/j.apenergy.2013.03.05610.1016/j.apenergy.2013.03.056Search in Google Scholar

[19] Cai T., Park S. Y., Racharaks R., Li Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy 2013:108:486–492. https://doi.org/10.1016/j.apenergy.2013.03.05610.1016/j.apenergy.2013.03.056Search in Google Scholar

[20] Monlau F., et al. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy and Environmental Science 2015:8(9):2600–2621. https://doi.org/10.1039/C5EE01633A10.1039/C5EE01633ASearch in Google Scholar

[21] Abeliovich A., Azov Y. Toxicity of ammonia to algae in sewage oxidation ponds. Applied and Environmental Microbiology 1976:31(6):801–6. https://doi.org/10.1128/AEM.31.6.801-806.197610.1128/aem.31.6.801-806.19761698377192Search in Google Scholar

[22] Caporgno M. P., et al. Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research 2015:10:232–239. https://doi.org/10.1016/j.algal.2015.05.01110.1016/j.algal.2015.05.011Search in Google Scholar

[23] Rawat I., Kumar R. R., Mutanda T., Bux F. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy 2013:103:444–467. https://doi.org/10.1016/j.apenergy.2012.10.00410.1016/j.apenergy.2012.10.004Search in Google Scholar

[24] Chew K. W., et al. Microalgae biorefinery: High value products perspectives. Bioresource Technology 2017:229:53–62. https://doi.org/10.1016/j.biortech.2017.01.00610.1016/j.biortech.2017.01.00628107722Search in Google Scholar

[25] Balat H. Prospects of biofuels for a sustainable energy future: a critical assessment. Energy Educ Sci Tech Part A 2009:24:85–111.Search in Google Scholar

[26] Kwietniewska E., Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus onmicroalgal biomass fermentation. Renewable and Sustainable Energy Reviews 2014:34:491–500. https://doi.org/10.1016/j.rser.2014.03.04110.1016/j.rser.2014.03.041Search in Google Scholar

[27] Huesemann M. H., et al. A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds. Biotechnology and Bioengineering 2013:110(6):1583–1594. https://doi.org/10.1002/bit.2481410.1002/bit.2481423280255Search in Google Scholar

[28] Appels L., Baeyens J., Degrève J., Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science 2008:34:755–781. https://doi.org/10.1016/j.pecs.2008.06.00210.1016/j.pecs.2008.06.002Search in Google Scholar

[29] Arias D. M., et al. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresource Technology 2018:247:513–519. https://doi.org/10.1016/j.biortech.2017.09.12310.1016/j.biortech.2017.09.12328972904Search in Google Scholar

[30] Putt R., Singh M., Chinnasamy S., Das K. C. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technology 2011:102:3240–3245. https://doi.org/10.1016/j.biortech.2010.11.02910.1016/j.biortech.2010.11.02921123050Search in Google Scholar

[31] Bhola V., et al. Overview of the potential of microalgae for CO2 sequestration. International Journal of Environmental Science and Technology 2014:11(7):2103–2118. https://doi.org/10.1007/s13762-013-0487-610.1007/s13762-013-0487-6Search in Google Scholar

[32] de Godos I., et al. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology 2014:153:307–314. https://doi.org/10.1016/j.biortech.2013.11.08710.1016/j.biortech.2013.11.08724374031Search in Google Scholar

[33] Kumar A., et al. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology 2010:28(7):371–380. https://doi.org/10.1016/j.tibtech.2010.04.00410.1016/j.tibtech.2010.04.004Search in Google Scholar

[34] Brown L. M. Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion and Management 1996:37(6–8):1363–1367. https://doi.org/10.1016/0196-8904(95)00347-910.1016/0196-8904(95)00347-9Search in Google Scholar

[35] Sheehan J., Dunahay T., Benemann J., Roessler P. A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. NREL/TP-580-24190. National Renewable Energy Laboratory, USA, 1998.10.2172/15003040Search in Google Scholar

[36] Li S., Luo S., Guo R. Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresource Technology 2013:136:267–272. https://doi.org/10.1016/j.biortech.2013.03.02510.1016/j.biortech.2013.03.02523567690Search in Google Scholar

[37] Harun R., Singh M., Forde G. M., Danquah M. K. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews 2010:14:1037–47. https://doi.org/10.1016/j.rser.2009.11.00410.1016/j.rser.2009.11.004Search in Google Scholar

[38] Zhao B., et al. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresource Technology 2014:161:423–30. https://doi.org/10.1016/j.biortech.2014.03.07910.1016/j.biortech.2014.03.07924736123Search in Google Scholar

[39] Passos F., Ferrer I. Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ Sci Technol 2014:48:7171–8. https://doi.org/10.1021/es500982v10.1021/es500982v24825469Search in Google Scholar

[40] Koller M., et al. Characteristics and potential of microalgal cultivation strategies: a review. J Clean Prod 2012:37:377–88. https://doi.org/10.1016/j.jclepro.2012.07.04410.1016/j.jclepro.2012.07.044Search in Google Scholar

[41] Chiaramonti D., et al. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy 2013:102:101–111. https://doi.org/10.1016/j.apenergy.2012.07.04010.1016/j.apenergy.2012.07.040Search in Google Scholar

[42] Placzek M., Patyna A., Witczak S. Technical evaluation of photobioreactors for microalgae cultivation. E3S Web of Conferences 2017:19:02032.10.1051/e3sconf/20171902032Search in Google Scholar

[43] Saharan B. S., et al. Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 2013:12:1–21.Search in Google Scholar

[44] Schenk P. M., et al. Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Research 2008:1(1):20–43. https://doi.org/10.1007/s12155-008-9008-810.1007/s12155-008-9008-8Search in Google Scholar

[45] Tredici M. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 2010:1(1):143–62. https://doi.org/10.4155/bfs.09.1010.4155/bfs.09.10Search in Google Scholar

[46] Chisti Y. Biodiesel from microalgae. Biotechnology Advancements 2007:25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.00110.1016/j.biotechadv.2007.02.00117350212Search in Google Scholar

[47] EnAlgae project [Online]. [Accessed 23.05.2019]. Available: http://www.enalgae.eu/Search in Google Scholar

[48] Singh S. P., Singh P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015:50:431–444. https://doi.org/10.1016/j.rser.2015.05.02410.1016/j.rser.2015.05.024Search in Google Scholar

[49] Park J. B. K., Craggs R. J. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology 2011:63(10):2403–2410. https://doi.org/10.2166/wst.2011.20010.2166/wst.2011.20021977667Search in Google Scholar

[50] Peter K. H., Sommer U. Phytoplankton Cell Size Reduction in Response to Warming Mediated by Nutrient Limitation. PLoS One 2013:8(9):1–6. https://doi.org/10.1371/journal.pone.007152810.1371/journal.pone.0071528376419824039717Search in Google Scholar

[51] Skau L. F., Andersen T., Thrane J.-E., Hessen D. O. Growth, stoichiometry and cell size; temperature and nutrient responses in haptophytes. PeerJ 2017:5(C):e3743. https://doi.org/10.7717/peerj.374310.7717/peerj.3743559055028890852Search in Google Scholar

[52] Park J. B. K., Craggs R. J. Algal production in wastewater treatment high rate algal ponds for potential biofuel use. Water Science and Technology 2011:63(10):2403–2410. https://doi.org/10.2166/wst.2011.20010.2166/wst.2011.200Search in Google Scholar

[53] Lee C. G. Calculation of light penetration depth in photobioreactors. Biotechnology and Bioprocess Engineering 1999:4(1):78–81. https://doi.org/10.1007/BF0293192010.1007/BF02931920Search in Google Scholar

[54] Gonçalves A. L., Pires J. C. M., Simões M. The effects of light and temperature on microalgal growth and 2 nutrients removal: an experimental and mathematical approach. RSC Advances 2016:27:22896–22907. https://doi.org/10.1039/C5RA26117A10.1039/C5RA26117ASearch in Google Scholar

[55] Iasimone F., et al. Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management 2018:223:1078–1085. https://doi.org/10.1016/j.jenvman.2018.07.02410.1016/j.jenvman.2018.07.02430096748Search in Google Scholar

[56] Narala R. R., et al. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Frontiers in Energy Research 2016:4:29. https://doi.org/10.3389/fenrg.2016.0002910.3389/fenrg.2016.00029Search in Google Scholar

[57] Yadala S., Cremaschi S. A Dynamic Optimization Model for Designing Open-Channel Raceway Ponds for Batch Production of Algal Biomass. Processes 2016:4:10. https://doi.org/10.3390/pr402001010.3390/pr4020010Search in Google Scholar

[58] Guillard R. R. L., Sieracki M. S. Counting Cells in Cultures with the Light Microscope. In Algal Culturing Techniques. Ed. Andersen R. A. New York: Elsevier Academic Press, 2005:239–252.10.1016/B978-012088426-1/50017-2Search in Google Scholar

[59] Richmond A., Hu Q. Handbook of Microalgal Culture: Biotechnology and Applied Phycology (2nd Ed.). Hoboken: Wiley-Blackwell, 2013.10.1002/9781118567166Search in Google Scholar

[60] Posten C., Feng Chen S. Microalgae Biotechnology. Switzerland: Springer International Publishing, 2016.10.1007/978-3-319-23808-1Search in Google Scholar

[61] Steele J. Environmental control of photosynthesis in the sea. Limnology and Oceanography 1962:7(2):137–150. https://doi.org/10.4319/lo.1962.7.2.013710.4319/lo.1962.7.2.0137Search in Google Scholar

[62] Daliry S., et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management 2017:3(2):217–230. https://doi.org/10.22034/gjesm.2017.03.02.010Search in Google Scholar

[63] Katuwal S. Designing and Development of a Photobioreactor for Optimizing the Growth of Micro Algae and Studying Its Growth Parameters, 2017.Search in Google Scholar

[64] Conti F., et al. CFD modelling of biomass mixing in anaerobic digesters of biogas plants. Journal of Climate and Environmental Technologies. In Press.Search in Google Scholar

[65] Lv J. M., et al. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 2010:101(17):6797–6804. https://doi.org/10.1016/j.biortech.2010.03.12010.1016/j.biortech.2010.03.12020456951Search in Google Scholar

[66] Yun Y. S., Moon Par J. Kinetic Modeling of the Light-Dependent Photosynthetic Activity of the Green Microalga Chlorella vulgaris. Biotechnology and Bioengineering 2003:83(3):303–11. https://doi.org/10.1002/bit.1066910.1002/bit.1066912783486Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other