Open Access

Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles


Cite

[1] Council BE. World Energy Scenarios. World Energy Council, 2013.Search in Google Scholar

[2] Bajcinovci B. Environment Quality: Impact From Traffic, Power Plant and Land Morphology, a Case Study of Prishtina. Environmental and Climate Technologies 2017:19:65–74. https://doi.org/10.1515/rtuect-2017-000610.1515/rtuect-2017-0006Search in Google Scholar

[3] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. https://doi.org/10.1515/rtuect-2017-000910.1515/rtuect-2017-0009Search in Google Scholar

[4] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22:107–117. https://doi.org/10.2478/rtuect-2018-000710.2478/rtuect-2018-0007Search in Google Scholar

[5] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22:165–178. https://doi.org/10.2478/rtuect-2018-001110.2478/rtuect-2018-0011Search in Google Scholar

[6] Conti J., et al. International energy outlook 2016 with projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016.Search in Google Scholar

[7] Curran S. J. et al. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles. Energy 2014:75:194–203. https://doi.org/10.1016/j.energy.2014.07.03510.1016/j.energy.2014.07.035Search in Google Scholar

[8] Assis Brasil de W. N., et al. Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario. Energy 2019:168:70–79. https://doi.org/10.1016/j.energy.2018.11.05110.1016/j.energy.2018.11.051Search in Google Scholar

[9] Van Vliet O., et al. Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources 2011:196(4):2298–2310. https://doi.org/10.1016/j.jpowsour.2010.09.11910.1016/j.jpowsour.2010.09.119Search in Google Scholar

[10] Travesset-Baro O., Rosas-Casals M., Jover E. Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra. Transportation Research Part D: Transport and Environment 2015:34:16–26. https://doi.org/10.1016/j.trd.2014.09.00610.1016/j.trd.2014.09.006Search in Google Scholar

[11] Kosai S., Nakanishi M., Yamasue E. Vehicle energy efficiency evaluation from well-to-wheel lifecycle perspective. Transportation Research Part D: Transport and Environment 2018:65:355–367. https://doi.org/10.1016/j.trd.2018.09.01110.1016/j.trd.2018.09.011Search in Google Scholar

[12] Hekkert M. P., Hendriks F. H., Faaij A. P., Neelis M. L. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 2005:33(5):579–594. https://doi.org/10.1016/j.enpol.2003.08.01810.1016/j.enpol.2003.08.018Search in Google Scholar

[13] Wang M. Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts. Journal of Power Sources 2002:112(1):307–321. https://doi.org/10.1016/S0378-7753(02)00447-010.1016/S0378-7753(02)00447-0Search in Google Scholar

[14] Stodolsky F., et al. Total fuel cycle impacts of advanced vehicles. SAE transactions 1999:444–459.10.4271/1999-01-0322Search in Google Scholar

[15] Ou X. M., Zhang X. L., Chang S. Y. Life-cycle analysis of energy consumption, GHG emissions and regulated pollutants emissions of automotive fuel pathways in China. Bejing: Center of Automotive Energy Research Center, Tsinghua University, 2008.Search in Google Scholar

[16] Tobin J. Natural gas compressor stations on the interstate pipeline network: developments since 1996. Energy Information Administration, Office of Oil and Gas 2007:1–12.Search in Google Scholar

[17] Bureau C. S. China energy statistic yearbook 2008. Beijing: China Statistic Press, 2018.Search in Google Scholar

[18] Pamela L. S., Mann M. K., Kerr D. R. Life cycle assessment of coal-fired power production. U.S.: National Renewable Energy Lab., 1999. https://doi.org/10.2172/1210010.2172/12100Search in Google Scholar

[19] NETL. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2. Pittsburgh, 2010.Search in Google Scholar

[20] Torchio M. F., Santarelli M. G. Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs–European market analysis. Energy 2010:35(10):4156–4171. https://doi.org/10.1016/j.energy.2010.06.037.10.1016/j.energy.2010.06.037Search in Google Scholar

[21] Torchio M. F., Santarelli M. G. Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs–European market analysis. Energy 2018:35(10):4156–4171. https://doi.org/10.1016/j.energy.2010.06.03710.1016/j.energy.2010.06.037Search in Google Scholar

[22] Unnasch S., Browning L. Fuel Cycle Energy Conversion Efficiency Analysis. Status Report. CA: Air Resources Board, 2000.Search in Google Scholar

[23] Graus W., Worrell E. Trend in efficiency and capacity of fossil power generation in the EU. Energy Policy 2009:37(6):2147–2160. https://doi.org/10.1016/j.enpol.2009.01.034.10.1016/j.enpol.2009.01.034Search in Google Scholar

[24] Tolmasquim M. Energia Renovável: hidráulica, biomassa, eólica, solar, oceânica, 2016.Search in Google Scholar

[25] Rosen M. A. Energy-and exergy-based comparison of coal-fired and nuclear steam power plants. Exergy, An International Journal 2001:1(3):180–192. https://doi.org/10.1016/S1164-0235(01)00024-310.1016/S1164-0235(01)00024-3Search in Google Scholar

[26] Edwards R., et al. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. SAE transactions 2004:1072–1084.10.4271/2004-01-1924Search in Google Scholar

[27] Fioreze M. Montagem de dispositivos ópticos para obtenção de imagens por contraste de difração e atenuação para análise de incrustações de fosfato e oxalato de cálcio em superfícies de caldeiras. Installation of optical devices for obtaining images by diffraction contrast and attenuation for analysis of calcium phosphate and oxalate incrustations on boiler surfaces, 2016. [Online]. [Accessed 15.03.2019]. Available: http://dspace.unila.edu.br/123456789/637 (In Spanish).Search in Google Scholar

[28] Allik A., Märss M., Uiga J., Annuk, A. Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving. Renewable Energy 2016:99:1116–1125. https://doi.org/10.1016/j.renene.2016.08.01610.1016/j.renene.2016.08.016Search in Google Scholar

[29] Pearsall N. The Performance of Photovoltaic (PV) Systems: Modelling, Measurement and Assessment. Woodhead Publishing, 2016. https://doi.org/10.1016/C2014-0-02701-310.1016/C2014-0-02701-3Search in Google Scholar

[30] Shipley M., et al. Combined heat and power: Effective energy solutions for a sustainable future. Oak Ridge National Laboratory, 2008.10.2172/1218492Search in Google Scholar

[31] Linssen J., Bickert S., Hennings W. Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukünftige Energieversorgungsstrukturen. Advances in Systems Analyses 1. 2012.Search in Google Scholar

[32] Smith W. J. Can EV (electric vehicles) address Ireland’s CO2 emissions from transport? Energy 2010:35(12):4514–4521. https://doi.org/10.1016/j.energy.2010.07.029 (in German)10.1016/j.energy.2010.07.029Search in Google Scholar

[33] Hayes J. G., De Oliveira R. P. R., Vaughan S., Egan M. G. Simplified electric vehicle power train models and range estimation. Presented at the IEEE vehicle power and propulsion conference, 2011. https://doi.org/10.1109/VPPC.2011.604316310.1109/VPPC.2011.6043163Search in Google Scholar

[34] Campanari S., Manzolini G., De la Iglesia F. G. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources 2009:186(2):464–477. https://doi.org/10.1016/j.jpowsour.2008.09.11510.1016/j.jpowsour.2008.09.115Search in Google Scholar

[35] Van Sterkenburg S., et al. Analysis of regenerative braking efficiency—A case study of two electric vehicles operating in the Rotterdam area. Presented at the 2011 IEEE Vehicle Power and Propulsion Conference, 2011. https://doi.org/10.1109/VPPC.2011.604310910.1109/VPPC.2011.6043109Search in Google Scholar

[36] Athanasopoulou L., Bikas H., Stavropoulos P. Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP 2018:78:25–30. https://doi.org/10.1016/j.procir.2018.08.16910.1016/j.procir.2018.08.169Search in Google Scholar

[37] Singh B., Ellingsen, L. A. W., Strømman A. H. Pathways for GHG emission reduction in Norwegian road transport sector: Perspective on consumption of passenger car transport and electricity mix. Transportation Research Part D: Transport and Environment 2015:41:160–164. https://doi.org/10.1016/j.trd.2015.09.02810.1016/j.trd.2015.09.028Search in Google Scholar

[38] National Academies of Sciences, Engineering, and Medicine. Review of the 21st Century Truck Partnership: Third Report. National Academies Press, 2015.Search in Google Scholar

[39] Sovran G. Revisiting the formulas for tractive and braking energy on the EPA driving schedules. SAE International Journal of Passenger Cars-Mechanical Systems 2013:6(1):269–282. https://doi.org/10.4271/2013-01-076610.4271/2013-01-0766Search in Google Scholar

[40] Kirkinen J., Palosuo T., Holmgren K., Savolainen I. Greenhouse impact due to the use of combustible fuels: Life cycle viewpoint and relative radiative forcing commitment. Environmental Management 2008:42(3):458. https://doi.org/10.1007/s00267-008-9145-z10.1007/s00267-008-9145-z251708818521657Search in Google Scholar

[41] Shonnard D. R., Klemetsrud B., Sacramento-Rivero J., Navarro-Pineda F., Hilbert J., Handler R., Suppen N., Donovan R. P. A review of environmental life cycle assessments of liquid transportation biofuels in the Pan American region. Environmental Management 2015:56(6):1356–76. https://doi.org/10.1007/s00267-015-0543-810.1007/s00267-015-0543-826041501Search in Google Scholar

[42] Doyle M. W., Von Windheim J. Environmental management strategy: four forces analysis. Environmental Management 2015:55(1):6–18. https://doi.org/10.1007/s00267-014-0389-510.1007/s00267-014-0389-525331643Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other