Cite

[1] Anex R. P. et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 2010:89(S1):S29–S35. https://doi.org/10.1016/j.fuel.2010.07.01510.1016/j.fuel.2010.07.015Search in Google Scholar

[2] Isikgor H. F., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:6(25):4497–4559. https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263JSearch in Google Scholar

[3] Bridgwater A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012:38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.04810.1016/j.biombioe.2011.01.048Search in Google Scholar

[4] Mohan D., Pittman C. U. Jr., Steele P. H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006:20(3):848–889. https://doi.org/10.1021/ef050239710.1021/ef0502397Search in Google Scholar

[5] Özsin G., Pütün A. E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FTIR. Waste Management 2017:64:315–326. https://doi.org/10.1016/j.wasman.2017.03.02010.1016/j.wasman.2017.03.020Search in Google Scholar

[6] Ranzi E., Debiagi P. E. A., Frassoldati A. Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis. ACS Sustain. Chem. Eng. 2017:5(4):2867–2881. https://doi.org/10.1021/acssuschemeng.6b0309610.1021/acssuschemeng.6b03096Search in Google Scholar

[7] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products. J. Anal. Appl. Pyrolysis 2003:67(2):325–340. https://doi.org/10.1016/S0165-2370(02)00071-210.1016/S0165-2370(02)00071-2Search in Google Scholar

[8] Sharypov V. I. et al. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J. Anal. Appl. Pyrolysis, 2002:64(1):15–28. https://doi.org/10.1016/S0165-2370(01)00167-X10.1016/S0165-2370(01)00167-XSearch in Google Scholar

[9] Zhou C.-H., Xia X., Lin C.-X., Tong D.-S., Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 2011:40(11):5588–5617. https://doi.org/10.1039/c1cs15124j10.1039/c1cs15124j21863197Search in Google Scholar

[10] Kamble A. D., Saxena V. K., Chavan P. D., Mendhe V. A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2019:29(2):171–186. https://doi.org/10.1016/j.ijmst.2018.03.01110.1016/j.ijmst.2018.03.011Search in Google Scholar

[11] Quan C., Gao N. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms. Biomed Research International 2016:6197867. https://doi.org/10.1155/2016/619786710.1155/2016/6197867504609527722171Search in Google Scholar

[12] Park D. K., Kim S. D., Lee S. H., Lee J. G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology 2010:101(15):6151–6156. https://doi.org/10.1016/j.biortech.2010.02.08710.1016/j.biortech.2010.02.08720299208Search in Google Scholar

[13] Hu Z., Ma X., Li L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst. 2016:89(3):447–455. https://doi.org/10.1016/j.joei.2015.02.00910.1016/j.joei.2015.02.009Search in Google Scholar

[14] Krasulina J., Luik H., Palu V., Tamvelius H. Thermochemical Co-liquefication of Estonian Oil Shale With Peat and Pine Bark. Oil Shale 2012:29(3):222–236. https://doi.org/10.3176/oil.2012.3.0310.3176/oil.2012.3.03Search in Google Scholar

[15] Chen B., Han X., Mu M., Jiang X. Studies of the Co-pyrolysis of Oil Shale and Wheat Straw. Energy & Fuels 2017:31(7):6941–6950. https://doi.org/10.1021/acs.energyfuels.7b0087110.1021/acs.energyfuels.7b00871Search in Google Scholar

[16] Konist A., Valtsev A., Loo L., Pihu T., Liira M., Kirsimäe K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel 2015:139:671–677. https://doi.org/10.1016/j.fuel.2014.09.05010.1016/j.fuel.2014.09.050Search in Google Scholar

[17] World Energy Council. World Energy Resources 2016. 2016. London, United Kingdom.Search in Google Scholar

[18] Kann J., Raukas A., Siirde A. About the Gasification of Kukersite Oil Shale. Oil Shale 2013:30(2S):283–293, 2013. https://doi.org/10.3176/oil.2013.2S.0810.3176/oil.2013.2S.08Search in Google Scholar

[19] Kann J., Elenurm A., Rohtla I., Golubev N., Kaidalov A., Kindorkin B. About thermal low-temperature processing of oil shale by solid heat carrier method. Oil Shale 2004:21(3):195–203.10.3176/oil.2004.3.02Search in Google Scholar

[20] Oja V., Rooleht R., Baird S. Z. Physical and thermodynamic properties of kukersite pyrolysis shale oil: literature review. Oil Shale 2016:33(2):184–197. https://doi.org/10.3176/oil.2016.2.0610.3176/oil.2016.2.06Search in Google Scholar

[21] Järvik O., Oja V. Molecular Weight Distributions and Average Molecular Weights of Pyrolysis Oils From Oil Shales: Literature Data and Measurements by Size Exclusion Chromatography (SEC) and Atmospheric Solids Analysis Probe Mass Spectroscopy (ASAP MS) or Oils from Four Different Deposits. Energy and Fuels 2017:31(1):328–339. https://doi.org/10.1021/acs.energyfuels.6b0245210.1021/acs.energyfuels.6b02452Search in Google Scholar

[22] Veski R., Veski S. Aliphatic dicarboxylic acids from oil shale orJDQLF PDWWHU ௅ KLVWRULF UHYLHZ Oil Shale 2019:36(1):76–95. https://doi.org/10.3176/oil.2019.1.0610.3176/oil.2019.1.06Search in Google Scholar

[23] Varma A. K., Shankar R., Mondal P. A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In Sarangi P., Nanda S., Mohanty P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore 2018, pp. 227–259. https://doi.org/10.1007/978-981-13-1307-3_1010.1007/978-981-13-1307-3_10Search in Google Scholar

[24] Abnisa F., Wan Daud W. M. A. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014:87:71–85. https://doi.org/10.1016/j.enconman.2014.07.00710.1016/j.enconman.2014.07.007Search in Google Scholar

[25] Dhaundiyal A., Tewari P. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002Search in Google Scholar

[26] Dhaundiyal A., Singh S. B. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. Biofuels 2018:9(5):647–658. https://doi.org/10.1080/17597269.2017.132949510.1080/17597269.2017.1329495Search in Google Scholar

[27] Emami-Taba L., Irfan M. F., Wan Daud W. M. A., Chakrabarti M. H. Fuel blending effects on the co-gasification of coal and biomass – A review. Biomass and Bioenergy 2013:57:249–263. https://doi.org/10.1016/j.biombioe.2013.02.04310.1016/j.biombioe.2013.02.043Search in Google Scholar

[28] Huber W. G., Iborra S., Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. ChemInform, 2006. https://doi.org/10.1002/chin.20065224010.1002/chin.200652240Search in Google Scholar

[29] Ptasinski K. J. Efficiency of biomass energy: an exergy approach to biofuels, power, and biorefineries. Wiley, 2016. https://doi.org/10.1002/978111911816910.1002/9781119118169Search in Google Scholar

[30] Plamus K., Soosaar S., Ots A., Neshumayev D. Firing Estonian Oil Shale of Higher Quality in CFB Boilers – Environmental and Economic Impact. Oil Shale 2011:28(1S):113. https://doi.org/10.3176/oil.2011.1S.0410.3176/oil.2011.1S.04Search in Google Scholar

[31] Williams P. T., Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 1996:7(3):233–250. https://doi.org/10.1016/0960-1481(96)00006-710.1016/0960-1481(96)00006-7Search in Google Scholar

[32] Williams P. T., Besler S., Taylor D. T. The pyrolysis of scrap automotive tyres: The influence of temperature and heating rate on product composition. Fuel 1990:69(12):1474–1482. https://doi.org/10.1016/0016-2361(90)90193-T10.1016/0016-2361(90)90193-TSearch in Google Scholar

[33] Guizani C., Jeguirim M., Valin S., Limousy L., Salvador S. Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies 2017:10(6):796. https://doi.org/10.3390/en1006079610.3390/en10060796Search in Google Scholar

[34] Debdoubi A., El amarti A., Colacio E., Blesa M. J., Hajjaj L. H. The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. Int. J. Energy Res. 2006:30(15):1243–1250. https://doi.org/10.1002/er.121510.1002/er.1215Search in Google Scholar

[35] Waheed Q. M. K., Nahil M. A., Williams P. T. Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 2013:86(4):233–241. https://doi.org/10.1179/1743967113Z.0000000006710.1179/1743967113Z.00000000067Search in Google Scholar

[36] Dhaundiyal A., Singh S. B., Hanon R., Muammel M. Rawat. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–22. https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001Search in Google Scholar

[37] Bhatia S. C. Advanced renewable energy systems. Woodhead Publishing India, 2014.Search in Google Scholar

[38] Task33 Database. [Online]. [Accessed: 14-Jun-2019]. Available: http://task33.ieabioenergy.com/content/Task 33 Projects.Search in Google Scholar

[39] Shen Q., Hedley M., Camps Arbestain M., Kirschbaum M. U. Can biochar increase the bioavailability of phosphorus? Journal of Soil Science and Plant Nutrition 2016:16(2). https://doi.org/10.4067/S0718-9516201600500002210.4067/S0718-95162016005000022Search in Google Scholar

[40] Yadav A., Ansari K. B., Simha P., Gaikar V. G., Pandit A. B. Vacuum pyrolysed biochar for soil amendment. Resour. Technol. 2016:2:S177–S185. https://doi.org/10.1016/j.reffit.2016.11.00410.1016/j.reffit.2016.11.004Search in Google Scholar

[41] Augustenborg C. A., Hepp S., Kammann C., Hagan D., Schmidt O., Müller C. Biochar and Earthworm Effects on Soil Nitrous Oxide and Carbon Dioxide Emissions. J. Environ. Qual. 2012:41(4):1203. https://doi.org/10.2134/jeq2011.011910.2134/jeq2011.011922751063Search in Google Scholar

[42] Nelissen V., Saha B. K., Ruysschaert G., Boeckx P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014:70:244–255. https://doi.org/10.1016/j.soilbio.2013.12.02610.1016/j.soilbio.2013.12.026Search in Google Scholar

[43] Kirsanovs V., Blumberga D., Dzikevics M., Kovals A. Design of Experimental Investigations on the Effect of Equivalence Ratio, Fuel Moisture Content and Fuel Consumption on Gasification Process. Energy Procedia 2016:95:189–194. https://doi.org/10.1016/j.egypro.2016.09.04510.1016/j.egypro.2016.09.045Search in Google Scholar

[44] Kirsanovs V., Blumberga D., Veidenbergs I., Rochas C., Vigants E., Vigants G. Experimental investigation of downdraft gasifier at various conditions. Energy Procedia 2017:128:332–338. https://doi.org/10.1016/j.egypro.2017.08.32110.1016/j.egypro.2017.08.321Search in Google Scholar

[45] Ronsse F., S. van Hecke, Dickinson D., Prins W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2013:5(2):104–115. https://doi.org/10.1111/gcbb.1201810.1111/gcbb.12018Search in Google Scholar

[46] Golubev N. Solid heat carrier technology for oil shale retorting. Oil Shale 2003:20(3):324–332.10.3176/oil.2003.3S.05Search in Google Scholar

[47] Reinik J. et al. Characterization of water extracts of oil shale retorting residues form gaseous and solid heat carrier processes. Fuel Process. Technol. 2015:131:443–451. https://doi.org/10.1016/j.fuproc.2014.12.02410.1016/j.fuproc.2014.12.024Search in Google Scholar

[48] Raukas A., Siirde A. New trends in Estonian oil shale industry. Oil Shale 2012:29(3):203–205. https://doi.org/10.3176/oil.2012.3.0110.3176/oil.2012.3.01Search in Google Scholar

[49] Kirsanovs V. et al. Biomass Gasification for District Heating. Energy Procedia 2017:113:217–223. https://doi.org/10.1016/j.egypro.2017.04.05710.1016/j.egypro.2017.04.057Search in Google Scholar

[50] Vélez J. F., Chejne F., Valdés C. F., Emery E. J., Londoño C. A. Co-gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel 2009:88(3):424–430. https://doi.org/10.1016/j.fuel.2008.10.01810.1016/j.fuel.2008.10.018Search in Google Scholar

[51] Järvik O., Viiroja A., Kamenev S., Kamenev I. Activated sludge process coupled with intermittent ozonation for sludge yield reduction and effluent water quality control. J. Chem. Technol. Biotechnol. 2011:86(7). https://doi.org/10.1002/jctb.261010.1002/jctb.2610Search in Google Scholar

[52] Paguio R. R., Saito K. M., Hund J. F., Jimenez R. M. Synthesis of Resorcinol Formaldehyde Aerogel Using UV Photo-Initiators for Inertial Confinement Fusion Experiments. MRS Proc. 2011:1306. https://doi.org/10.1557/opl.2011.47610.1557/opl.2011.476Search in Google Scholar

[53] Peikolainen A.-L., Perez-Cabalerro F., Koel M. Low-Density Organic Aerogels From Oil Shale By-Product 5-Methylresorcinol. Oil Shale 2008:25(3):348–358. https://doi.org/10.3176/oil.2008.3.0610.3176/oil.2008.3.06Search in Google Scholar

[54] Peikolainen A.-L., Volobujeva O., Aav R., Uibu M., Koel M. Organic acid catalyzed synthesis of 5-methylresorcinol based organic aerogels in acetonitrile. J. Porous Mater. 2012:19(2):189–194. https://doi.org/10.1007/s10934-011-9459-810.1007/s10934-011-9459-8Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other