Open Access

Optimal Scheduling of Residential Electricity Demand Based on the Power Management of Hybrid Energy Resources


Cite

[1] Chamandoust H. et al. Optimal hybrid system design based on renewable energy resources. Proceedings IEEE Smart Grid Conference (SGC), 2017. https://doi.org/10.1109/SGC.2017.830887810.1109/SGC.2017.8308878Search in Google Scholar

[2] Chamandoust H. et al. Scheduling of Smart Micro Grid Considering Reserve and Demand Side Management. Proceedings IEEE Smart Grid Conference (SGC), 2018. https://doi.org/10.1109/SGC.2018.877792610.1109/SGC.2018.8777926Search in Google Scholar

[3] Suter J. F., Shammin R. Residential energy efficiency and conservation measures: A field experiment. Energy Policy 2013:59:551–561. https://doi.org/10.1016/j.enpol.2013.04.003.10.1016/j.enpol.2013.04.003Search in Google Scholar

[4] Sun H., Poor H. V., Hatziargyriou N. D., Carpanini L. Smarter Energy: from Smart Metering to the Smart Grid. IET Digital Library (2016).10.1049/PBPO088ESearch in Google Scholar

[5] Wu Y., Tan X., Qian L., Tsang D. H. K., Song W., Yu L. Optimal Pricing and Energy Scheduling for Hybrid Energy Trading Market in Future Smart Grid. IEEE Transactions on Industrial Informatics 2015:11:1585–1596. https://doi.org/10.1109/TII.2015.251418310.1109/TII.2015.2514183Search in Google Scholar

[6] Guodong L., Yan X., Tomsovic K. Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization. IEEE Transaction On Sustainable Energy 2016:7:227-237. https://doi.org/10.1109/TSG.2015.247666910.1109/TSG.2015.2476669Search in Google Scholar

[7] David A. K., Wen F. Strategic Bidding in Competitive Electricity Markets: a Literature Survey. IEEE PEs general meeting 2000:4:2168–2173. https://doi.org/10.1109/PESS.2000.86698210.1109/PESS.2000.866982Search in Google Scholar

[8] Gong C., Wang X., Xu W., Tajer A. Distributed Real-Time Energy Scheduling in Smart Grid: Stochastic Model and Fast Optimization. IEEE Trans. Smart Grid 2013:4:1476–1489. https://doi.org/10.1109/TSG.2013.224839910.1109/TSG.2013.2248399Search in Google Scholar

[9] Vrettos E. I., Papathanassiou S. A. Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids. IEEE Trans Energy Convers 2011:26:744–756. https://doi.org/10.1109/TEC.2011.212957110.1109/TEC.2011.2129571Search in Google Scholar

[10] Ruilong D., Zaiyue Y., Yuen Chow M., Chen J. A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. IEEE Transactions on Industrial Informatics, 2015. https://doi.org/10.1109/TII.2015.241471910.1109/TII.2015.2414719Search in Google Scholar

[11] Albadi M., El-Saadany E. A summary of demand response in electricity markets. Electric Power Systems Research 2008:78(11):1989–1996. https://doi.org/10.1016/j.epsr.2008.04.00210.1016/j.epsr.2008.04.002Search in Google Scholar

[12] Ericson T. Direct load control of residential water heaters. Energy Policy 2009:37(9):3502–3512. https://doi.org/10.1016/j.enpol.2009.03.06310.1016/j.enpol.2009.03.063Search in Google Scholar

[13] Aalami H., Moghaddam M., Yousefi G. Demand response modelling considering interruptible/curtailable loads and capacity market programs. Applied Energy 2010:87(1):243–250. https://doi.org/10.1016/j.apenergy.2009.05.04110.1016/j.apenergy.2009.05.041Search in Google Scholar

[14] Tasdighi M., Ghasemi H., Rahimi-Kian A. Residential microgrid scheduling based on smart meters data and temperature dependent thermal load modeling. IEEE Transactions on Smart Grid 2014:5:349–357. https://doi.org/10.1109/TSG.2013.226182910.1109/TSG.2013.2261829Search in Google Scholar

[15] Laihyuk P., Yongwoon J., Sungrae C., Joongheon K. Residential Demand Response for Renewable Energy Resources in Smart Grid Systems. IEEE Transactions on Industrial Informatics 2017:13:3165–3173. https://doi.org/10.1109/TII.2017.270428210.1109/TII.2017.2704282Search in Google Scholar

[16] Derakhshan G., Shayanfar H. A., Kazemi A. The optimization of demand response programs in smart grids. Energy Policy 2016:94:295–306. https://doi.org/10.1016/j.enpol.2016.04.00910.1016/j.enpol.2016.04.009Search in Google Scholar

[17] Pavithra N., Priya Esther B. Residential demand response using genetic algorithm. Power and Advanced Computing Technologies 2017:1–4. https://doi.org/10.1109/IPACT.2017.824514310.1109/IPACT.2017.8245143Search in Google Scholar

[18] Dlamini N. G., Cromieres F. Implementing peak load reduction algorithms for household electrical appliances. Energy Policy 2012:44:280–290. https://doi.org/10.1016/j.enpol.2012.01.05110.1016/j.enpol.2012.01.051Search in Google Scholar

[19] Terés-Zubiaga J., Campos-Celador A., González-Pino I., Diarce G. The role of the design and operation of individual heating systems for the energy retrofits of residential buildings. Energy Conversion and Management 2016:126:736–747. https://doi.org/10.1016/j.enconman.2016.08.04210.1016/j.enconman.2016.08.042Search in Google Scholar

[20] Ghafoor Memon A., Memon R. Thermodynamic analysis of a trigeneration system proposed for residential application. Energy Conversion and Management 2017:145:182–203. https://doi.org/10.1016/j.enconman.2017.04.08110.1016/j.enconman.2017.04.081Search in Google Scholar

[21] Haider H. T., See O. H., Elmenreich W. A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews 2016:59:166–178. https://doi.org/10.1016/j.rser.2016.01.01610.1016/j.rser.2016.01.016Search in Google Scholar

[22] Moghaddam A. A., Monsef H., Kian A. R., Guerrero J. M., Vasquez J. C. Optimized energy management of a single-house residential microgrid with automated demand response. IEEE Eindhoven PowerTech 2015:1–6. https://doi.org/10.1109/PTC.2015.723224310.1109/PTC.2015.7232243Search in Google Scholar

[23] Arun S. L., Selvan M. P. Intelligent Residential Energy Management System for Dynamic Demand Response in Smart Buildings. IEEE Systems Journal 2017:12:1329–1340. https://doi.org/10.1109/JSYST.2017.264775910.1109/JSYST.2017.2647759Search in Google Scholar

[24] Chenxi L., Fengji L., Yingying C., Zhao X., Yinan A., Xiao L. Smart home energy management with vehicle-to-home technology. Control & Automation (ICCA). 13th IEEE International Conference on Control and Automation 2017:136–142. https://doi.org/10.1109/ICCA.2017.800304810.1109/ICCA.2017.8003048Search in Google Scholar

[25] Tazvinga H., Zhu B., Xia X. Optimal power flow management for distributed energy resources with batteries. Energy Conversion and Management 2015:102:104–110. https://doi.org/10.1016/j.enconman.2015.01.01510.1016/j.enconman.2015.01.015Search in Google Scholar

[26] Bozchalui M. C., Hashmi S. A., Hassen H., Cañizares C. A., Bhattacharya K. Optimal Operation of Residential Energy Hubs in Smart Grids. IEEE Transactions on smart grid 2012:3:1755–1766. https://doi.org/10.1109/TSG.2012.221203210.1109/TSG.2012.2212032Search in Google Scholar

[27] Pedrasa M. A., Spooner T. D., MacGill I. F. Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services. IEEE Transactions on Smart Grid 2010:1:134–143. https://doi.org/10.1109/TSG.2010.205305310.1109/TSG.2010.2053053Search in Google Scholar

[28] Agnetis A., de Pascale G., Detti P., Vicino A. Load Scheduling for Household Energy Consumption Optimization. IEEE Transactions on Smart Grid 2013:4:2364–2373. https://doi.org/10.1109/TSG.2013.225450610.1109/TSG.2013.2254506Search in Google Scholar

[29] Aghaei J., Alizadeh M. I. Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy 2013:55:1044–1054. https://doi.org/10.1016/j.energy.2013.04.04810.1016/j.energy.2013.04.048Search in Google Scholar

[30] Nazari-Harris M., Abapour S., Mohammadi-Ivatloo B. Optimal economic dispatch of FC-CHP based heat and power micro-grids. Applied Thermal Engineering 2016:114(5):756–769. https://doi.org/10.1016/j.applthermaleng.2016.12.01610.1016/j.applthermaleng.2016.12.016Search in Google Scholar

[31] Chunyang L., Wang X., Wu X., Guo J. Economic scheduling model of microgrid considering the lifetime of batteries. IET Generation, Transmission & Distribution 2016:11(3):759. https://doi.org/10.1049/iet-gtd.2016.077210.1049/iet-gtd.2016.0772Search in Google Scholar

[32] Aien M., Fotuhi-Firuzabad M., Rashidinejad M. Probabilistic optimal power flow in correlated hybrid wind – photovoltaic power systems. IEEE Trans. Smart Grid 2014:5:130–138. https://doi.org/10.1109/TSG.2013.229335210.1109/TSG.2013.2293352Search in Google Scholar

[33] Cau G., Cocco D., Petrollese M., Knudsen Kaer S., Milan C. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Conversion and Management 2014:87:820–831. https://doi.org/10.1016/j.enconman.2014.07.07810.1016/j.enconman.2014.07.078Search in Google Scholar

[34] Chamandoust H. et al. Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources. Journal of Energy Storage 2020:27:101112. https://doi.org/10.1016/j.est.2019.10111210.1016/j.est.2019.101112Search in Google Scholar

[35] Yu R., Yang W., Rahardja R. A statistical demand-price model with its application in optimal real-time price. IEEE Trans. Smart Grid 2012:3:1734–1742. https://doi.org/10.1109/TSG.2012.221740010.1109/TSG.2012.2217400Search in Google Scholar

[36] Syed S. A. et al. Factors Affecting Energy-Efficient Household Products Buying Intention: Empirical Study. Environmental and Climate Technologies 2019:23(1):84–97. https://doi.org/10.2478/rtuect-2019-000610.2478/rtuect-2019-0006Search in Google Scholar

[37] Kittipongvises S., Chavalparit O., Sutthirat C. Greenhouse Gases and Energy Intensity of Granite Rock Mining Operations in Thailand: A Case of Industrial Rock-Construction. Environmental and Climate Technologies 2016:18(1):64–75. https://doi.org/10.1515/rtuect-2016-001410.1515/rtuect-2016-0014Search in Google Scholar

[38] Chamandoust H. et al. Tri-objective optimal scheduling of smart energy hub system with schedulable loads. Journal of Cleaner Production 2019:236:117584. https://doi.org/10.1016/j.jclepro.2019.07.05910.1016/j.jclepro.2019.07.059Search in Google Scholar

[39] Chamandoust H. Economic Scheduling of Micro Grid Based on Energy Management and Demand Response. Electrical, Control and Communication Engineering 2018:14:100–107. https://doi.org/10.2478/ecce-2018-001210.2478/ecce-2018-0012Search in Google Scholar

[40] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: A Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. https://doi.org/10.1515/rtuect-2017-000910.1515/rtuect-2017-0009Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other