Cite

[1] Shahidi D., Roy R., Azzouz A. Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts. Applied Catalysis B: Environmental 2015:174–175:277–292. https://doi.org/10.1016/j.apcatb.2015.02.04210.1016/j.apcatb.2015.02.042Search in Google Scholar

[2] Echeverria C. A., Handoko W., Pahlevani F., Sahajwalla V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. Journal of Cleaner Production 2019:208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.22710.1016/j.jclepro.2018.10.227Search in Google Scholar

[3] Sandin G., Peters G. M. Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production 2018:184:353–365. https://doi.org/10.1016/j.jclepro.2018.02.26610.1016/j.jclepro.2018.02.266Search in Google Scholar

[4] Bedin K. C., Martins A. C., Cazetta A. L., Osvaldo P., Almeida V. C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal 2016:286:476–484. https://doi.org/10.1016/j.cej.2015.10.09910.1016/j.cej.2015.10.099Search in Google Scholar

[5] Herbache H., Ramdani A., Taleb Z., Ruiz-Rosas R., Taleb S., Morallón E., Pirault-Roy L., Ghaffour N. Catalytic degradation of O-cresol using H2O2 onto Algerian Clay-Na. Water Environment Research 2019:91(2):165–174. https://doi.org/10.1002/wer.102210.1002/wer.1022Search in Google Scholar

[6] Ghaedi M., Hassanzadeh A., Nasiri Kokhdan S. Multiwalled Carbon Nanotubes as Adsorbents for the Kinetic and Equilibrium Study of the Removal of Alizarin Red S and Morin. Journal of Chemical and Engineering 2011:56:2511–2520. https://doi.org/10.1021/je200041410.1021/je2000414Search in Google Scholar

[7] Vimonses V., Lei S., Jin B., Chow C. W. K., Saint C. Kinetic Study and Equilibrium Isotherm Analysis of Congo Red Adsorption by Clay Materials. Chemical Engineering Journal 2009:148(1–2):354–364. https://doi.org/10.1016/j.cej.2008.09.00910.1016/j.cej.2008.09.009Search in Google Scholar

[8] Krumins J., Robalds A. Biosorption of Metallic Elements onto Fen Peat. Environmental and Climate Technologies 2014:14(1):12–17. http://dx.doi.org/10.1515/rtuect-2014-000810.1515/rtuect-2014-0008Search in Google Scholar

[9] Zenasni M. A., Benfarhi S., Mansri A., Benmehdi H., Meroufel B., Desbrieres J., Dedriveres R. Influence of pH on the Uptake of Toluene from Water by the Composite Poly(4 vinylpyridinium)-Maghnite. African Journal of Pure and Applied Chemistry 2011:5:486–493. https://doi.org/10.5897/AJPAC.900007810.5897/AJPAC11.066Search in Google Scholar

[10] Vahidhabanu S., Karuppasamy D., Abideen Idowu A., Ramesh B. B. Impregnation of zinc oxide modified clay over alginate beads: a novel material for the effective removal of congo red from wastewater. The Royal Society of Chemistry 2017:10:5669–5678. http://doi.org/10.1039/c6ra26273b10.1039/C6RA26273BSearch in Google Scholar

[11] Herrmann J.-M., Matos J., Disdier J., Guillard C., Laine J., Malato S., Blanco J. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catalysis Today 1999:54(2–3):255–265. https://doi.org/10.1016/S0920-5861(99)00187-X10.1016/S0920-5861(99)00187-XSearch in Google Scholar

[12] Nagaoka S., Hamasaki Y., Ishihara S.-I., Nagata M., Iio K., Nagasawa C., Ihara H. Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation. Journal of Molecular Catalysis A: Chemical 2001:177(2):255–263. https://doi.org/10.1016/S1381-1169(01)00271-010.1016/S1381-1169(01)00271-0Search in Google Scholar

[13] Stamboliadis E., Emejulu A., Pantelaki O., Pentari D., Petrakis E. Removal of Phenols from the Water Effluents of Olive Presses. Environmental and Climate Tech. 2012:8:4–11. http://dx.doi.org/10.2478/v10145-012-0001-2Search in Google Scholar

[14] Liu J., Dong M., Zuo S., Yu Y. Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Applied Clay Science 2009:43(2):156–159. https://doi.org/10.1016/j.clay.2008.07.01610.1016/j.clay.2008.07.016Search in Google Scholar

[15] Palmisano G., Nieto-Suárez M., Ferrer M., Gutiérrez M., Yurdakal S., Augugliaro V., Pagliaro M., Monte F. Self-assembled titaniasilica-sepiolite based nanocomposites for water decontamination. Journal of Materials Chemistry 2009:19:2070–2075. https://doi.org/10.1039/B813864H10.1039/b813864hSearch in Google Scholar

[16] Rahman A., Kishimoto N., Urabe T. Adsorption characteristics of clay adsorbents – sepiolite, kaolin and synthetic talc – for removal of Reactive Yellow 138:1. Water and Environment Journal 2015:29(3):375–382. https://doi.org/10.1111/wej.1213110.1111/wej.12131Search in Google Scholar

[17] Yao Y., Gao B., Fang J., Zhang M., Chen H., Zhou Y., Creamer A. E., Sun Y., Yang L. Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal 2014:242:136–143. https://doi.org/10.1016/j.cej.2013.12.06210.1016/j.cej.2013.12.062Search in Google Scholar

[18] Cai J., Shen B., Li Z., Chen J., He C. Removal of elemental mercury by clays impregnated with KI and KBr. Chemical Engineering Journal 2014:241:19–27. https://doi.org/10.1016/j.cej.2013.11.07210.1016/j.cej.2013.11.072Search in Google Scholar

[19] Belaidi N., Bedrane S., Choukchou-Braham A., Bachir R. Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science 2015:107:14–20. https://doi.org/10.1016/j.clay.2015.01.02610.1016/j.clay.2015.01.026Search in Google Scholar

[20] Bouazza D., Miloudi H., Adjdir M., Tayeb A., Boos A. Competitive adsorption of Cu (II) and Zn (II) on impregnate raw Algerian bentonite and efficiency of extraction. Applied Clay Science 2018:151:118–123. https://doi.org/10.1016/j.clay.2017.10.02610.1016/j.clay.2017.10.026Search in Google Scholar

[21] Hajjaji M., Kacim S., Alami A., El Bouadili A., El Mountassir M. Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Applied Clay Science 2001:20(1–2):1–12. https://doi.org/10.1016/S0169-1317(00)00041-710.1016/S0169-1317(00)00041-7Search in Google Scholar

[22] Elass K., Laachach A., Alaoui A., Azzi M. Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Applied Clay Science 2011:54(1):90–96. https://doi.org/10.1016/j.clay.2011.07.01910.1016/j.clay.2011.07.019Search in Google Scholar

[23] Ajbary M., Santos A., Morales-Flórez V., Esquivias L. Removal of basic yellow cationic dye by an aqueous dispersion of Moroccan stevensite. Applied Clay Science 2013:80–81:46–51. https://doi.org/10.1016/j.clay.2013.05.01110.1016/j.clay.2013.05.011Search in Google Scholar

[24] Mu’azu N. D. Evaluation of the Influence of Clay Montmorillonite Content on the Aqueous Uptake of Lead and Zinc. Water Environment Research 2018:90(9):771–782. https://doi.org/10.2175/106143017x1513101215320210.2175/106143017X1513101215320229891021Search in Google Scholar

[25] Sani H. A., Ahmad M. B., Hussein M. Z., Ibrahim N. A., Musa A., Saleh T. A. Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Safety and Environmental Protection 2017:109:97–105. https://doi.org/10.1016/j.psep.2017.03.02410.1016/j.psep.2017.03.024Search in Google Scholar

[26] Bessaha H., Bouraada M., de Ménorval L. C. Removal of an Acid Dye from Water Using Calcined and Uncalcined ZnAl-r Anionic Clay. Water Environment Research 2017:89(9):783–790. https://doi.org/10.2175/106143017x1490296825480910.2175/106143017X1490296825480928855016Search in Google Scholar

[27] Khireddine O., Berredjem Y., Djellaibi R., Hailaimia F., Bensid N., Boulmokh A. Étude de matériaux argileux et leur Impact sur l’adsorption de certains polluants. Chimie, Universite Badji Mokhtar Annaba, 2016.Search in Google Scholar

[28] Moro D., Ulian G., Valdrè G. 3D meso-nanostructures in cleaved and nanolithographed Mg-Al-hydroxysilicate (clinochlore): Topology, crystal-chemistry, and surface properties. Applied Clay Science 2019:169:74–80. https://doi.org/10.1016/j.clay.2018.12.02010.1016/j.clay.2018.12.020Search in Google Scholar

[29] Sreenivas B., Roy A. B., Srinivasan R. Geochemistry of sericite deposits at the base of the paleoproterozoic aravalli supergroup, Rajasthan, India: Evidence for metamorphosed and metasomatised precambrian paleosol. Journal of Earth System Science 2001:110(1):39–61. https://doi.org/10.1007/BF0270222910.1007/BF02702229Search in Google Scholar

[30] Lahcene D., Behilil A., Zahraoui B., Benmehdi H., Belhachemi M., Choukchou-Braham A. Physicochemical characterization of new natural clay from south west of Algeria: Application to the elimination of malachite green dye. Environmental Progress & Sustainable Energy 2019:38(4). https://doi.org/10.1002/ep.1315210.1002/ep.13152Search in Google Scholar

[31] Ye J., Li X., Hong J., Chen J., Fan Q. Photocatalytic degradation of phenol over ZnO nanosheets immobilized on montmorillonite. Materials Science in Semiconductor Processing 2015:39:17–22. https://doi.org/10.1016/j.mssp.2015.04.03910.1016/j.mssp.2015.04.039Search in Google Scholar

[32] Hadjltaief H. B., Zina M. B., Galvez M. E., Da Costa P. Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry 2016:315:25–33. https://doi.org/10.1016/j.jphotochem.2015.09.00810.1016/j.jphotochem.2015.09.008Search in Google Scholar

[33] Dhakshinamoorthy A., Visuvamithiran P., Tharmaraj V., Pitchumani K. Clay encapsulated ZnO nanoparticles as efficient catalysts for N-benzylation of amines. Catalysis Communications 2011:16(1):15–19. https://doi.org/10.1016/j.catcom.2011.08.02610.1016/j.catcom.2011.08.026Search in Google Scholar

[34] Bouna L., Rhouta B., Amjoud M., Maury F., Lafont M. C., Jada A., Senocq F., Daoudi L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Applied Clay Science 2011:52(3):301–311. https://doi.org/10.1016/j.clay.2011.03.00910.1016/j.clay.2011.03.009Search in Google Scholar

[35] Favero J. da S., Parisotto-Peterle J., Weiss-Angeli V., Brandalise R. N., Gomes L. B., Bergmann C. P., dos Santos V. Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Applied Clay Science 2016:124–125:252–259. https://doi.org/10.1016/j.clay.2016.02.02210.1016/j.clay.2016.02.022Search in Google Scholar

[36] Bouchemal N., Belhachemi M., Merzougui Z., Addoun F. The effect of temperature and impregnation ratio on the active carbon porosity. Desalination and water treatment 2009:10(1–3):115–120. https://doi.org/10.5004/dwt.2009.82810.5004/dwt.2009.828Search in Google Scholar

[37] Waqas A., Imtiaz A., Muhammad I., Ihsan K. Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arabian Journal of Chemistry 2017:10(S2):S3263–S3269. https://doi.org/10.1016/j.arabjc.2013.12.02510.1016/j.arabjc.2013.12.025Search in Google Scholar

[38] Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898:24:1–39.Search in Google Scholar

[39] Kim J.-O., Lee S.-M., Jeon C. Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chemical engineering research and design 2014:92(2):368–374. https://doi.org/10.1016/j.cherd.2013.07.02010.1016/j.cherd.2013.07.020Search in Google Scholar

[40] Hameed B. H., El-Khaiary M. I. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. Journal of Hazardous Materials 2008:153(1–2):701–708. https://doi.org/10.1016/j.jhazmat.2007.09.01910.1016/j.jhazmat.2007.09.01917942219Search in Google Scholar

[41] Belhachemi M., Djelaila S. Removal of Amoxicillin Antibiotic from Aqueous Solutions by Date Pits Activated Carbons. Environmental Processes 2017:4:549–561. https://doi.org/10.1007/s40710-017-0245-810.1007/s40710-017-0245-8Search in Google Scholar

[42] Arellano-Cárdenas S., López-Cortez S., Cornejo-Mazón M., Mares-Gutiérrez J. C. Study of malachite green adsorption by organically modified clay using a batch method. Applied Surface Science 2013:280:74–78. https://doi.org/10.1016/j.apsusc.2013.04.09710.1016/j.apsusc.2013.04.097Search in Google Scholar

[43] Saha P., Chowdhury S., Gupta S., Kumar I. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chemical Engineering Journal 2010:165(3):874–882. https://doi.org/10.1016/j.cej.2010.10.04810.1016/j.cej.2010.10.048Search in Google Scholar

[44] Tian Y., Liu P., Wang X., Lin H. Adsorption of malachite green from aqueous solutions onto ordered mesoporous carbons. Chemical Engineering Journal 2011:171(3):1263–1269. https://doi.org/10.1016/j.cej.2011.05.04010.1016/j.cej.2011.05.040Search in Google Scholar

[45] Tang H., Zhou W., Zhang L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. Journal of Hazardous Materials 2012:209–210:218–225. https://doi.org/10.1016/j.jhazmat.2012.01.01010.1016/j.jhazmat.2012.01.01022284169Search in Google Scholar

[46] Ghaedi M., Mosallanejad N. Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. Journal of Industrial and Engineering Chemistry 2014:20(3):1085–1096. https://doi.org/10.1016/j.jiec.2013.06.04610.1016/j.jiec.2013.06.046Search in Google Scholar

[47] Nguemtchouin M. G. M., Ngassoum M. B., Kamga R., Deabate S., Lagerge S., Gastaldi E.,Chalier P., Cretin M. Characterization of inorganic and organic clay modified materials: An approach for adsorption of an insecticidal terpenic compound. Applied Clay Science 2015:104:110–118. https://doi.org/10.1016/j.clay.2014.11.01610.1016/j.clay.2014.11.016Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other