Cite

[1] Staffell I., Scamman D., Abad A. V., Balcombe P., Dodds P. E., Ekins P., Shah N., Ward K. R. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019:12:463–491. https://doi.org/10.1039/C8EE01157E10.1039/C8EE01157ESearch in Google Scholar

[2] Blumberga D., Chen B., Ozarska A., Indzere Z., Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23:370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102Search in Google Scholar

[3] Wang Y., Chen K. S., Mishler J., Cho S. C., Adroher X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011:88(4):981–1007. https://doi.org/10.1016/j.apenergy.2010.09.03010.1016/j.apenergy.2010.09.030Search in Google Scholar

[4] Zhang J., Xie Z., Zhang J., Tang Y., Song C., Navessin T., Shi Z., Song D., Wang H., Wilkinson D. P., Liu Z.-S., Holdcroft S. High temperature PEM fuel cells. Journal of Power Sources 2006:160(2):872–891. https://doi.org/10.1016/j.jpowsour.2006.05.03410.1016/j.jpowsour.2006.05.034Search in Google Scholar

[5] Yang C., Costamagna P., Srinivasan S., Benziger J., Bocarsly A. B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Journal of Power Sources 2001:103(1):1–9. https://doi.org/10.1016/S0378-7753(01)00812-610.1016/S0378-7753(01)00812-6Search in Google Scholar

[6] Pan C., He R., Li Q., Jensen J. O., Bjerrum N. J., Hjulmand H. A., Jensen A. B. Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources 2005:145(2):392–398. https://doi.org/10.1016/j.jpowsour.2005.02.05610.1016/j.jpowsour.2005.02.056Search in Google Scholar

[7] Büsselmann J., Rastedt M., Tullius V., Yezerska K., Dyck A., Wagner P. Evaluation of HT-PEM MEAs: Load cycling versus start/stop cycling. International Journal of Hydrogen Energy 2019:44(35):19384–19394. https://doi.org/10.1016/j.ijhydene.2018.07.18110.1016/j.ijhydene.2018.07.181Search in Google Scholar

[8] Büsselmann J., Rastedt M., Klicpera T., Reinwald K., Schmies H., Dyck A., Wagner P. Analysis of HT-PEM MEAs’ Long-Term Stabilities. Energies 2020:13(3):567. https://doi.org/10.3390/en1303056710.3390/en13030567Search in Google Scholar

[9] Jeon Y., Na H., Hwang H., Park J., Hwang H., Shul Y.-G. Accelerated life-time test protocols for polymer electrolyte membrane fuel cells operated at high temperature. International Journal of Hydrogen Energy 2015:40(7):3057–3067. https://doi.org/10.1016/j.ijhydene.2015.01.01010.1016/j.ijhydene.2015.01.010Search in Google Scholar

[10] Kannan A., Kabza A., Scholta J. Long-term testing of start-stop cycles on high temperature PEM fuel cell stack. Journal of Power Sources 2015:277:312–316. https://doi.org/10.1016/j.jpowsour.2014.11.11510.1016/j.jpowsour.2014.11.115Search in Google Scholar

[11] Zhang S., Yuan X., Wang H., Merida W., Zhu H., Shen J., Wu S., Zhang J. A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy 2009:34:388–404. https://doi.org/10.1016/j.ijhydene.2008.10.01210.1016/j.ijhydene.2008.10.012Search in Google Scholar

[12] Schonvogel D., Rastedt M., Wagner P., Wark M., Dyck A. Impact of Accelerated Stress Tests on High Temperature PEMFC Degradation. Fuel Cells 2016:16(4):480–489. https://doi.org/10.1002/fuce.20150016010.1002/fuce.201500160Search in Google Scholar

[13] Rosli R. E., Sulong A. B., Daud W. R. W., Zulkifley M. A., Husaini T., Rosli M. I., Majlan E. H., Haque M. A. A review of high – temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017:42(14):9293–9314. https://doi.org/10.1016/j.ijhydene.2016.06.21110.1016/j.ijhydene.2016.06.211Search in Google Scholar

[14] Chandan A., Hattenberger M., El-kharouf A., Du S., Dhir A., Self V., Pollet B. G., Ingram A., Bujalski W. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources 2013:231:264–278. https://doi.org/10.1016/j.jpowsour.2012.11.12610.1016/j.jpowsour.2012.11.126Search in Google Scholar

[15] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22:42–54. https://doi.org/10.2478/rtuect-2018-000310.2478/rtuect-2018-0003Search in Google Scholar

[16] Ozola Z. U., Vesere R., Kalnins S. N., Blumberga D. Paper Waste Recycling. Circular Economy Aspects. Environmental and Climate Technologies 2019:23:260–273. https://doi.org/10.2478/rtuect-2019-009410.2478/rtuect-2019-0094Search in Google Scholar

[17] Stevens D. A., Dahn J. R. Thermal degradation of the support in carbon-supported electrocatalysts for PEM fuel cells. Carbon 2005:43(1):179–188. https://doi.org/10.1016/j.carbon.2004.09.00410.1016/j.carbon.2004.09.004Search in Google Scholar

[18] Daud N. A. B, Abouzari Lotf E., Sophia Sha’rani S., Nasef M. M., Ahmad A., Rasit Ali R. Efforts to Improve PBI/Acid Membrane System for High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC). E3S Web of Conferences 2019:90:01002. https://doi.org/10.1051/e3sconf/2019900100210.1051/e3sconf/20199001002Search in Google Scholar

[19] Zhang J., Aili D., Lu S., Li Q., Jiang S. P. Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures. AAAS Research 2020:2020:9089405. https://doi.org/10.34133/2020/908940510.34133/2020/9089405729835332566932Search in Google Scholar

[20] Sun X., Simonsen S. C., Norby T., Chatzitakis A. Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes 2019:9(7):83. https://doi.org/10.3390/membranes907008310.3390/membranes9070083668083531336708Search in Google Scholar

[21] Sharaf O. Z., Orhan M. F. An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews 2014:32:810–853. https://doi.org/10.1016/j.rser.2014.01.01210.1016/j.rser.2014.01.012Search in Google Scholar

[22] Wu J., Yuan X. Z., Martin J. J., Wang H., Zhang J., Shen J., Wu S., Merida W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources 2008:184(1):104–119. https://doi.org/10.1016/j.jpowsour.2008.06.00610.1016/j.jpowsour.2008.06.006Search in Google Scholar

[23] Park J. O., Hong S.-G. Design and optimization of HT-PEMFC MEAs. In: Li Q., Aili D., Hjuler H.A., Jensen J.O. (eds.), High temperature polymer electrolyte membrane fuel cells. Dordrecht: Springer, 2016, 331–352. https://doi.org/10.1007/978-3-319-17082-4_1610.1007/978-3-319-17082-4_16Search in Google Scholar

[24] Lai Y.-H., Rahmoeller K. M., Hurst J. H., Kukreja R. S., Atwan M., Maslyn A. J., Gittleman C. S. Accelerated Stress Testing of Fuel Cell Membranes Subjected to Combined Mechanical/Chemical Stressors and Cerium Migration, Journal of the Electrochemical Society 2018:165:F3217–F3229. https://doi.org/10.1149/2.0241806jes10.1149/2.0241806jesSearch in Google Scholar

[25] Spernjak D., Fairweather J., Rockward T., Mukundan R., Borup R. L. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions 2011:41:741–750. https://doi.org/10.1149/1.363560810.1149/1.3635608Search in Google Scholar

[26] Bloom I., Walker L. K., Basco J. K., Malkow T., Saturnio A., De Marco G., Tsotridis G. A comparison of fuel cell testing protocols – A case study: Protocols used by the U.S. Department of Energy, European Union, International Electrotechnical Commission/Fuel Cell Testing and Standardization Network, and Fuel Cell Technical Team. Journal of Power Sources 2013:243:451–457. https://doi.org/10.1016/j.jpowsour.2013.06.02610.1016/j.jpowsour.2013.06.026Search in Google Scholar

[27] FCTestNet/FCTesQA. Test module PEFC SC 5-2. Testing the voltage and the power as a function of the current density. Polarisation curve for a PEFC single cell. Technical report, European Commission Joint Research Centre, Institute for Energy, 2010.Search in Google Scholar

[28] Gode P., Jaouen F., Lindbergh G., Lundblad A., Sundholm G. Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochimica Acta 2003:48(28):4175–4187. https://doi.org/10.1016/S0013-4686(03)00603-010.1016/S0013-4686(03)00603-0Search in Google Scholar

[29] Yuan X. Z., Wang H., Sun J. C., Zhang J. AC impedance technique in PEM fuel cell diagnosis – A review. International Journal of Hydrogen Energy 2007:32(17):4365–4380. https://doi.org/10.1016/j.ijhydene.2007.05.03610.1016/j.ijhydene.2007.05.036Search in Google Scholar

[30] Cooper K. R., Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources 2006:160(2):1088–1095. https://doi.org/10.1016/j.jpowsour.2006.02.08610.1016/j.jpowsour.2006.02.086Search in Google Scholar

[31] Yuan X. Z., Song C., Wang H., Zhang J. Electrochemical impedance spectroscopy in PEM fuel cells: Theory and practice. London: Springer, 2010. https://doi.org/10.1007/978-1-84882-846-910.1007/978-1-84882-846-9Search in Google Scholar

[32] Jespersen J. L., Schaltz E., Kaer S. K. Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell. Journal of Power Sources 2009:191(2):289–296. https://doi.org/10.1016/j.jpowsour.2009.02.02510.1016/j.jpowsour.2009.02.025Search in Google Scholar

[33] Chang W. R., Hwang J. J., Weng F. B., Chan S. H. Effect of clamping pressure on the performance of a PEM fuel cell. Journal of Power Sources 2007:166(1):149–154. https://doi.org/10.1016/j.jpowsour.2007.01.01510.1016/j.jpowsour.2007.01.015Search in Google Scholar

[34] Mukundan R., Baker A. M., Kusoglu A., Beattie P., Knights S., Weber A. Z., Borup R. L. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing. Journal of the Electrochemical Society 2018:165:F3085–F3093. https://doi.org/10.1149/2.0101806jes10.1149/2.0101806jesSearch in Google Scholar

[35] Yuan X. Z., Sun J. C., Wang H., Li H. Accelerated conditioning for a proton exchange membrane fuel cell. Journal of Power Sources 2012:205:340–344. https://doi.org/10.1016/j.jpowsour.2012.01.03910.1016/j.jpowsour.2012.01.039Search in Google Scholar

[36] Stariha S., Macauley N., Sneed B. T., Langlois D., More K. L., Mukundan R., Borup R. L. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society 2018:165:F492–F501. https://doi.org/10.1149/2.0881807jes10.1149/2.0881807jesSearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other