Open Access

Mathematical Modelling of Volatile Gas Using Lattice Boltzmann Method


Cite

[1] Frisch U., Hasslacher, B., Pomeau, Y. Lattice-Gas Automata for the Navier-Stokes Equation. Physical Review Letters 1986:56(14):1505–1508. https://doi.org/10.1103/PhysRevLett.56.150510.1103/PhysRevLett.56.150510032689Search in Google Scholar

[2] Rothman, D. H., Zaleski S. Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow. Reviews of Modern Physics 1994:66(4):1417–1479. https://doi.org/10.1103/RevModPhys.66.141710.1103/RevModPhys.66.1417Search in Google Scholar

[3] Chen S., Doolen G. D. Lattice Boltzmann Method for Fluid Flows. Annual Review of Fluid Mechanics 2002:30(1):329–364. https://doi.rg/10.1146/annurev.fluid.30.1.32910.1146/annurev.fluid.30.1.329Search in Google Scholar

[4] Gunstensen A. K., et al. Lattice Boltzmann model of immiscible fluids. Physical Review A 1991:43(8):4320–4327. https://doi.org/10.1103/PhysRevA.43.432010.1103/PhysRevA.43.4320Search in Google Scholar

[5] Yih C. S. Instability due to viscosity stratification. Journal of Fluid Mechanics 1967:27(2):337–352. https://doi.org/10.1017/S002211206700035710.1017/S0022112067000357Search in Google Scholar

[6] Yiantsios S. G., Higgins, B. G. Linear stability of plane Poiseuille flow of two superposed fluids. Physics of Fluids 1988:31:3225–3238. https://doi.org/10.1063/1.86693310.1063/1.866933Search in Google Scholar

[7] Boyd W. G. C. Shear-flow in stability at the interface between two viscous fluids. Journal of Fluid Mechanics 1983:128:507–528. https://doi.org/10.1017/S002211208300058010.1017/S0022112083000580Search in Google Scholar

[8] South M. J., Hooper A. P. Linear growth in two-fluid plane Poiseuille flow. Journal of Fluid Mechanics 1999:381:121–139. https://doi.org/10.1017/S002211209800357710.1017/S0022112098003577Search in Google Scholar

[9] Shan X., Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E 1993:47(3):1815–1819. https://doi.org/10.1103/PhysRevE.47.181510.1103/PhysRevE.47.1815Search in Google Scholar

[10] Swift M. R., Osborn W. R., Yeomans J. M. Lattice Boltzmann simulation of nonideal fluids. Physical Review Letters 1995:75(5):830–833. https://doi.org/10.1103/PhysRevLett.75.83010.1103/PhysRevLett.75.83010060129Search in Google Scholar

[11] He X., et al. On the three-dimensional Rayleigh-Taylor instability. Physics of Fluids 1999:11(5):1143–1152. https://doi.org/10.1063/1.86998410.1063/1.869984Search in Google Scholar

[12] Wang Y., et al. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. Journal of Computational Physics 2015:280:404–423. https://doiorg/10.1016/j.jcp.2014.09.03510.1016/j.jcp.2014.09.035Search in Google Scholar

[13] Zhang R., He X., Chen S. Interface and surface tension in incompressible lattice Boltzmann multiphase model. Computer Physics Communications 2000:129(1–3):121–130. https://doi.org/10.1016/S0010-4655(00)00099-010.1016/S0010-4655(00)00099-0Search in Google Scholar

[14] Chin J., Boek E. S., Coveney P. V. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2002:547–558. https://doi.org/10.1098/rsta.2001.095310.1098/rsta.2001.095316214694Search in Google Scholar

[15] Grosfils P., et al. Structural and dynamical characterization of Hele-Shaw viscous fingering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2004:1723–1734. https://doi.org/10.1098/rsta.2004.139810.1098/rsta.2004.139815306442Search in Google Scholar

[16] Kang Q., Zhang D., Chen S. Immiscible displacement in a channel: Simulations of fingering in two dimensions. Advances in Water Resources 2004:27(1):13–22. https://doi.org/10.1016/j.advwatres.2003.10.00210.1016/j.advwatres.2003.10.002Search in Google Scholar

[17] Dong B., et al. Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel. Computers and Fluids 2010:39(5):768–779. https://doi.org/10.1016/j.compfluid.2009.12.00510.1016/j.compfluid.2009.12.005Search in Google Scholar

[18] Bhatnagar P. L., Gross E. P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review 1954:94(3):511. https://doi.org/10.1103/PhysRev.94.51110.1103/PhysRev.94.511Search in Google Scholar

[19] He X., Luo L. S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 1997:55(6):6811–6820. https://doi.org/10.1103/PhysRevE.56.681110.1103/PhysRevE.56.6811Search in Google Scholar

[20] Qian Y. H., D’Humières D., Lallemand P. Lattice BGK models for Navier-Stokes Equation. Epl 1992:17(6):479–484. https://doi.org/10.1209/0295-5075/17/6/00110.1209/0295-5075/17/6/001Search in Google Scholar

[21] Tang G. H., Tao W. Q., He Y. L. Thermal boundary condition for the thermal lattice Boltzmann equation. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 2005:72(1). https://doi.org/10.1103/PhysRevE.72.01670310.1103/PhysRevE.72.01670316090130Search in Google Scholar

[22] Chen Z., Shu C., Tan D. Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids 2017:29(5). https://doi.org/10.1063/1.498333910.1063/1.4983339Search in Google Scholar

[23] Chen S., Martínez D., Mei R. On boundary conditions in lattice Boltzmann methods. Physics of Fluids 1996:8(9):2527–2536. https://doi.org/10.1063/1.86903510.1063/1.869035Search in Google Scholar

[24] Sbragaglia M., Succi S. Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Physics of Fluids 2005:17(9):1–8. https://doi.org/10.1063/1.204482910.1063/1.2044829Search in Google Scholar

[25] Zou Q., He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids 1997:9(6):1591–1598. https://doi.org/10.1063/1.86930710.1063/1.869307Search in Google Scholar

[26] Crane Company. 1988. Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410 (TP 410). Springville: Vervante, 1998.Search in Google Scholar

[27] Dhaundiyal A., Tewari, P. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). Environmental and Climate Technologies 2017:19(1):15–32. https://doi.org/10.1515/rtuect-2017-000210.1515/rtuect-2017-0002Search in Google Scholar

[28] Dhaundiyal A., et al. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 2018:22(1):5–21. https://doi.org/10.1515/rtuect-2018-000110.1515/rtuect-2018-0001Search in Google Scholar

[29] Dhaundiyal A., et al. Clayton copula as an alternative perspective of multi-reaction model. Environmental and Climate Technologies 2018:22(1):83–106. https://doi.org/10.2478/rtuect-2018-000610.2478/rtuect-2018-0006Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other