Cite

[1] Langemeyer J., Gomez-Baggethun E., Haase D., Scheuer S., Elmqvist T. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science & Policy 2016:62:45–56. https://doi.org/10.1016/j.envsci.2016.02.01310.1016/j.envsci.2016.02.013Search in Google Scholar

[2] Ishizaka A., Nemery P. Multi-Criteria Decision Analysis. John Wiley & Sons, 2013.10.1002/9781118644898Search in Google Scholar

[3] Yazdani M., Payam A. F. A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS. Materials & Design 2015:65:328–334. https://doi.org/10.1016/j.matdes.2014.09.00410.1016/j.matdes.2014.09.004Search in Google Scholar

[4] Debbarma B., Chakraborti P., Bose P. K., Deb M., Banerjee R. Exploration of PROMETHEE II and VIKOR methodology in a MCDM approach for ascertaining the optimal performance-emission trade-off vantage in a hydrogen-biohol dual fuel endeavour. Fuel 2017:210:922–935. https://doi.org/10.1016/j.fuel.2017.08.01610.1016/j.fuel.2017.08.016Search in Google Scholar

[5] Chen Y., Ran Y., Wang Z., Li X., Yang X., Zhang G. An extended MULTIMOORA method based on OWGA operator and Choquet integral for risk prioritization identification of failure modes. Engineering Applications of Artificial Intelligence 2020:91:103605. https://doi.org/10.1016/j.engappai.2020.10360510.1016/j.engappai.2020.103605Search in Google Scholar

[6] Obayiuwana E., Falowo O. A multimoora approach to access network selection process in heterogeneous wireless networks. IEEE AFRICON Conf. 2015. https://doi.org/10.1109/AFRCON.2015.7331973.10.1109/AFRCON.2015.7331973Search in Google Scholar

[7] Sennaroglu B., Varlik Celebi G. A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment 2018:59:160–173. https://doi.org/10.1016/j.trd.2017.12.02210.1016/j.trd.2017.12.022Search in Google Scholar

[8] Garg R., Jain D. Fuzzy multi-attribute decision making evaluation of e-learning websites using FAHP, COPRAS, VIKOR, WDBA. Decision Science Letters 2017:6(4):351–364. https://doi.org/10.5267/j.dsl.2017.2.003.10.5267/j.dsl.2017.2.003Search in Google Scholar

[9] Fakhrehosseini S. F. Selecting the Optimal Industrial Investment by Multi-Criteria Decision-Making Methods with Emphasis on TOPSIS, VIKOR and COPRAS (Case Study of Guilan Province). International Journal of Research in Industrial Engineering 2020:8(4):312–324. https://doi.org/10.22105/riej.2020.216548.1117Search in Google Scholar

[10] Batur Sir G. D., Çalışkan E. Assessment of development regions for financial support allocation with fuzzy decision making: A case of Turkey. Socio-Economic Planning Sciences 2019:66:161–169. https://doi.org/10.1016/j.seps.2019.02.00510.1016/j.seps.2019.02.005Search in Google Scholar

[11] Leal J. E. AHP-express : A simplified version of the analytical hierarchy process method. MethodsX 2020:7:100748. https://doi.org/10.1016/j.mex.2019.11.02110.1016/j.mex.2019.11.021699301332021813Search in Google Scholar

[12] Opricovic S. Compromise solution by MCDM methods : A comparative analysis of VIKOR and TOPSIS. 2004:156(2):445–455. https://doi.org/10.1016/S0377-2217(03)00020-110.1016/S0377-2217(03)00020-1Search in Google Scholar

[13] Chatterjee P., Manikrao V., Chakraborty S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Designs 2011:32(2):851–860. https://doi.org/10.1016/j.matdes.2010.07.01010.1016/j.matdes.2010.07.010Search in Google Scholar

[14] Ajrina A. S., Sarno R., Hari Ginardi R. V. Comparison of MOORA and COPRAS Methods Based on Geographic Information System For Determining Potential Zone of Pasir Batu Mining. International Conference on Information and Communications Technology, ICOIACT 2019:360–365. https://doi.org/10.1109/ICOIACT46704.2019.893846510.1109/ICOIACT46704.2019.8938465Search in Google Scholar

[15] Suharevska, K., Blumberga, D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies 2019:23(2):47–63. https://doi.org/10.2478/rtuect-2019-005410.2478/rtuect-2019-0054Search in Google Scholar

[16] Whiteman, A., Sohn, H., Esparrago, J., Arkhipova, I., and Elsayed S. Renewable Capacity Statistics. IRENA, 2018. [Online]. [Accessed: April 7, 2020]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdfSearch in Google Scholar

[17] A. Ilas, P. Ralon, A. Rodriguez, and M. Taylor. Renewable Power Generation Costs in 2018. International Renewable Energy Agency, IRENA, 2018. [Online]. [Accessed: April 8, 2020]. Available: https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018Search in Google Scholar

[18] US Energy Information Administration. Levelized Cost and Levelized Avoided Cost of New Generation Resources. Annual Energy Outlook 2019. [Online]. [Accessed: April 8, 2020]. Available: http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf.Search in Google Scholar

[19] European Environment Agency. Renewable Energy in Europe – 2017 Update. EEA Report, No. 23/2017 [Online]. [Accessed: April 7, 2020]. Available: https://www.eea.europa.eu//publications/renewable-energy-in-europeSearch in Google Scholar

[20] World Nuclear Association. Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. WNA Report, 2011. [Online]. [Accessed: April 7, 2020]. Available: http://www.world-nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdfSearch in Google Scholar

[21] Ferroukhi, R., Khalid, A., García-Baños, C., and Renner, M. Renewable Energy and Jobs – Annual Review 2017. IRENA, 2017. [Online]. [Accessed: April 8, 2020]. Available: https://www.irena.org/publications/2017/May/Renewable-Energy-and-Jobs--Annual-Review-2017Search in Google Scholar

[22] Saaty T. L., Ozdemir M. S. Why the magic number seven plus or minus two. Mathematical and Computer Modelling 2003:38(3–4):233–244. https://doi.org/10.1016/S0895-7177(03)90083-510.1016/S0895-7177(03)90083-5Search in Google Scholar

[23] Kablan M. M. Decision support for energy conservation promotion: An analytic hierarchy process approach. Energy Policy 2004:32(10):1151–1158. https://doi.org/10.1016/S0301-4215(03)00078-810.1016/S0301-4215(03)00078-8Search in Google Scholar

[24] Opricovic S. Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research 2007:178:514–529. https://doi.org/10.1016/j.ejor.2006.01.02010.1016/j.ejor.2006.01.020Search in Google Scholar

[25] Hafezalkotob A., Hafezalkotob A. Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence 2017:57:184–196. https://doi.org/10.1016/j.engappai.2016.10.01810.1016/j.engappai.2016.10.018Search in Google Scholar

[26] Sayadi M. K., Heydari M., Shahanaghi K. Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling 2009:33(5):2257–2262. https://doi.org/10.1016/j.apm.2008.06.00210.1016/j.apm.2008.06.002Search in Google Scholar

[27] Nuuter T., Lill I., Tupenaite L. Land Use Policy Comparison of housing market sustainability in European countries based on multiple criteria assessment. Land Use Policy 2015:42:642–651. https://doi.org/10.1016/j.landusepol.2014.09.02210.1016/j.landusepol.2014.09.022Search in Google Scholar

[28] Hafezalkotob A., Hafezalkotob A., Kazem M. Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling 2016:40(2):1372–1386. https://doi.org/10.1016/j.apm.2015.07.01910.1016/j.apm.2015.07.019Search in Google Scholar

[29] Karande P., Chakraborty S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design 2012:37:317–324. https://doi.org/10.1016/j.matdes.2012.01.01310.1016/j.matdes.2012.01.013Search in Google Scholar

[30] Mareschal, B. Visual PROMETHEE 1.4 Manual. VPSolutions 2012-2013:1–192. [Online]. [Accessed: April 9, 2020]. Available: http://www.promethee-gaia.net/files/VPManual.pdfSearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other