Cite

[1] Burandt T., Xiong B., Löffler K., Oei P. Y. Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors. Applied Energy 2019:255:113820. https://doi.org/10.1016/j.apenergy.2019.11382010.1016/j.apenergy.2019.113820Search in Google Scholar

[2] Andersen K. S., Termansen L. B., Gargiulo M., Gallachóirc B. P. Ó. Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models. Energy 2019:169:277–293. https://doi.org/10.1016/j.energy.2018.11.15310.1016/j.energy.2018.11.153Search in Google Scholar

[3] Wu Y. H., Liu C. H., Hung M. L., Liu T. Y., Masui T. Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models. Energy Policy 2019:132:1241–1255. https://doi.org/10.1016/j.enpol.2019.06.04310.1016/j.enpol.2019.06.043Search in Google Scholar

[4] Gravelsins A. et al. Modelling energy production flexibility: System dynamics approach. Energy Procedia 2018:147:503–509. https://doi.org/10.1016/j.egypro.2018.07.06010.1016/j.egypro.2018.07.060Search in Google Scholar

[5] Han S., Kim J. An optimization model to design and analysis of renewable energy supply strategies for residential sector. Renewable Energy 2017:112:222–234. https://doi.org/10.1016/j.renene.2017.05.03010.1016/j.renene.2017.05.030Search in Google Scholar

[6] McCallum P. A multi-sectoral approach to modelling community energy demand of the built environment. Energy Policy 2019:132:865–875. https://doi.org/10.1016/j.enpol.2019.06.04110.1016/j.enpol.2019.06.041Search in Google Scholar

[7] Astudillo M. F., Vaillancourt K., Pineau P. O., Amor B. Can the household sector reduce global warming mitigation costs? Sensitivity to key parameters in a TIMES techno-economic energy model. Applied Energy 2017:205:486–498. https://doi.org/10.1016/j.apenergy.2017.07.13010.1016/j.apenergy.2017.07.130Search in Google Scholar

[8] Karali N., Park W. Y., McNeil M. Modeling technological change and its impact on energy savings in the U.S. iron and steel sector. Applied Energy 2017:202:447–458. https://doi.org/10.1016/j.apenergy.2017.05.17310.1016/j.apenergy.2017.05.173Search in Google Scholar

[9] Wiese F., Baldini M. Conceptual model of the industry sector in an energy system model: A case study for Denmark. Journal of Cleaner Production 2018:203:427–443. https://doi.org/10.1016/j.jclepro.2018.08.22910.1016/j.jclepro.2018.08.229Search in Google Scholar

[10] Fleiter T. et al. A methodology for bottom-up modelling of energy transitions in the industry sector: The FORECAST model. Energy Strategy Reviews 2018:22:237–254. https://doi.org/10.1016/j.esr.2018.09.00510.1016/j.esr.2018.09.005Search in Google Scholar

[11] Tash A., Ahanchian M., Fahl U. Improved representation of investment decisions in the German energy supply sector: An optimization approach using the TIMES model. Energy Strategy Reviews 2019:26:100421. https://doi.org/10.1016/j.esr.2019.10042110.1016/j.esr.2019.100421Search in Google Scholar

[12] Balyk O. et al. TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish energy system. Energy Strategy Reviews 2017:23:13–22. https://doi.org/10.1016/j.esr.2018.11.00310.1016/j.esr.2018.11.003Search in Google Scholar

[13] Li P. H., Keppo I., Strachan N. Incorporating homeowners’ preferences of heating technologies in the UK TIMES model. Energy 2018:148:716–727. https://doi.org/10.1016/j.energy.2018.01.15010.1016/j.energy.2018.01.150Search in Google Scholar

[14] Bolwig S. et al. Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews 2018:101:440–452. https://doi.org/10.1016/j.rser.2018.11.01910.1016/j.rser.2018.11.019Search in Google Scholar

[15] Reveiu A., Smeureanu I., Dardala M., Kanala R. Modelling domestic lighting energy consumption in Romania by integrating consumers behavior. Procedia Computer Science 2015:52(1):812–818. https://doi.org/10.1016/j.procs.2015.05.13710.1016/j.procs.2015.05.137Search in Google Scholar

[16] Cayla J. M., Maïzi N. Integrating household behavior and heterogeneity into the TIMES-Households model. Applied Energy 2015:139:56–67. https://doi.org/10.1016/j.apenergy.2014.11.01510.1016/j.apenergy.2014.11.015Search in Google Scholar

[17] Pfenninger S. Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews 2018:19:63–71. https://doi.org/10.1016/j.esr.2017.12.00210.1016/j.esr.2017.12.002Search in Google Scholar

[18] Loulou R., Goldstein G., Kanudia A., Lettila A., Remme U., Noble K. Documentation for the TIMES Model PART I - Concepts and Theory. Energy Technology Systems Analysis Programme, 2016.Search in Google Scholar

[19] Commission to the European Parliament and the Council, Climate action progress report. [Online]. [Accessed: 15.04.2020]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0576Search in Google Scholar

[20] Central Statistical Bureau of Latvia. Energy balance, TJ, thsd toe (NACE Rev.2). [Online]. [Accessed: 22.04.2020]. Available: http://data1.csb.gov.lv/pxweb/en/vide/vide__energetika__ikgad/ENG020.px/.Search in Google Scholar

[21] Cabinet of Ministers. Regulation on building classification in Latvia. Latvijas Vestnesis 118, no. 118, 2018.Search in Google Scholar

[22] The State Construction Control Bureau of Latvia. Average specific heating consumption. 2018. [Online]. [Accessed: 15.02.2020]. Available: http://bvkb.gov.lv/lv/content/videjais-ipatnejais-apkures-paterins-2.Search in Google Scholar

[23] Ministry of Economics. Long-Term Strategy for Renovation of Buildings. Riga, 2017.Search in Google Scholar

[24] Ministry of Economics. Valsts institūciju īpašumā, valdījumā un lietošanā esošās ēkas ar kopējo platību virs 250 m2. 2019. (In Latvian)Search in Google Scholar

[25] Cabinet of Ministers. Regulations Regarding Energy Certification of Buildings. Latvijas Vestnesis, 2013.Search in Google Scholar

[26] Fuentes E., Arce L., Salom J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews 2017:81:1530–1547. https://doi.org/10.1016/j.rser.2017.05.22910.1016/j.rser.2017.05.229Search in Google Scholar

[27] Roth K. W., Dieckmann J., Hamilton S. D., Goetzler W. Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III : Energy Savings Potential. Building Technologies Program 2002:3(68370)Search in Google Scholar

[28] Werner S. European space cooling demands. Energy 2016:110:148–156. https://doi.org/10.1016/j.energy.2015.11.02810.1016/j.energy.2015.11.028Search in Google Scholar

[29] Pérez-Lombard L., Ortiz J., Pout C. A review on buildings energy consumption information. Energy and Buildings 2008:40(3):394–398. https://doi.org/10.1016/j.enbuild.2007.03.00710.1016/j.enbuild.2007.03.007Search in Google Scholar

[30] Cabinet of Ministers. Labour Protection Requirements in Workplaces. Latvijas Vestnesis, 2009.Search in Google Scholar

[31] Aman M. M., Jasmon G. B., Mokhlis H., Bakar A. H. A. Analysis of the performance of domestic lighting lamps. Energy Policy 2013:52:482–500. https://doi.org/10.1016/j.enpol.2012.09.06810.1016/j.enpol.2012.09.068Search in Google Scholar

[32] Kerimray A., Suleimenov B., De Miglio R., Rojas-Solórzano L., Amouei Torkmahalleh M., Gallachóir B. P. Ó. Investigating the energy transition to a coal free residential sector in Kazakhstan using a regionally disaggregated energy systems model. Journal of Cleaner Production 2018:196:1532–1548. https://doi.org/10.1016/j.jclepro.2018.06.15810.1016/j.jclepro.2018.06.158Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other