Open Access

Advancements in Thermal Energy Storage System by Applications of Nanofluid Based Solar Collector: A Review


Cite

[1] Nagarajan P. K., Subramani J., Suyambazhahan S., Sathyamurthy R. Nanofluids for solar collector applications: A review. Energy Procedia 2014:61:2416–2434. https://doi.org/10.1016/j.egypro.2014.12.01710.1016/j.egypro.2014.12.017Search in Google Scholar

[2] Javadi F. S., Saidur R., Kamalisarvestani M. Investigating performance improvement of solar collectors by using nanofluids. Reneable and Sustainable. Energy Reviews 2013:28:232–245. https://doi.org/10.1016/j.rser.2013.06.05310.1016/j.rser.2013.06.053Search in Google Scholar

[3] Kasaeian A., Eshghi A. T., Sameti M. A review on the applications of nanofluids in solar energy systems. Renewable and Sustainable. Energy Reviews 2015:43:584–598. https://doi.org/10.1016/j.rser.2014.11.02010.1016/j.rser.2014.11.020Search in Google Scholar

[4] Khanafer K., Vafai K. A review on the applications of nanofluids in solar energy field. Renewable Energy 2018:123:398–406. https://doi.org/10.1016/j.renene.2018.01.09710.1016/j.renene.2018.01.097Search in Google Scholar

[5] Dheep G. R., Sreekumar A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review. Energy Conversion and Management 2014:83:133–148. https://doi.org/10.1016/j.enconman.2014.03.05810.1016/j.enconman.2014.03.058Search in Google Scholar

[6] Al-Shamani A. N. et al. Nanofluids for improved efficiency in cooling solar collectors – A review. Renewable and Sustainable Energy Reviews 2014:38:348–367. https://doi.org/10.1016/j.rser.2014.05.04110.1016/j.rser.2014.05.041Search in Google Scholar

[7] He Q., Zeng S., Wang S. Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Applied Thermal Engineering 2015:88:165–171. https://doi.org/10.1016/j.applthermaleng.2014.09.05310.1016/j.applthermaleng.2014.09.053Search in Google Scholar

[8] Said Z. et al. Performance enhancement of a Flat Plate Solar collector using Titanium dioxide nanofluid and Polyethylene Glycol dispersant. Journal of Cleaner Production 2015:92:343–353. https://doi.org/10.1016/j.jclepro.2015.01.00710.1016/j.jclepro.2015.01.007Search in Google Scholar

[9] Yousefi T., Veysi F., Shojaeizadeh E., Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy 2012:39(1):293–298. https://doi.org/10.1016/j.renene.2011.08.05610.1016/j.renene.2011.08.056Search in Google Scholar

[10] Kasaeian A., Daviran S., Azarian R. D., Rashidi A. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Conversion and Management 2015:89:368–375. https://doi.org/10.1016/j.enconman.2014.09.05610.1016/j.enconman.2014.09.056Search in Google Scholar

[11] Lee S. H., Jang S. P. Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy. International Journal of Heat and Mass Transfer 2015:80:58–71. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.09110.1016/j.ijheatmasstransfer.2014.08.091Search in Google Scholar

[12] Rana P., Bhargava R., Bég O. A. Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Computers and Mathematics with Application 2012:64(9):2816–2832. https://doi.org/10.1016/j.camwa.2012.04.01410.1016/j.camwa.2012.04.014Search in Google Scholar

[13] Yu W., Choi S. U. S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research 2003:5:167–171. https://doi.org/10.1023/A:102443860380110.1023/A:1024438603801Search in Google Scholar

[14] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL United States, 1995.Search in Google Scholar

[15] Wang L., Fan J. Nanofluids research: Key issues. Nanoscale Research Letters 2010:5(8):1241–1252. https://doi.org/10.1007/s11671-010-9638-610.1007/s11671-010-9638-6289852520676214Search in Google Scholar

[16] Eastman J. A., Choi S. U. S., Li S., Yu W., Thompson L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 2001:78(6):718–720. https://doi.org/10.1063/1.134121810.1063/1.1341218Search in Google Scholar

[17] Hong T.-K., Yang H.-S., Choi C. J. Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics 2005:97(6):64311. https://doi.org/10.1063/1.186114510.1063/1.1861145Search in Google Scholar

[18] Das S. K., Putra N., Thiesen P., Roetzel W. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. Journal of Heat Transfer 2003:125(4)567. https://doi.org/10.1115/1.157108010.1115/1.1571080Search in Google Scholar

[19] Patel H. E., Das S. K., Sundararajan T., Sreekumaran Nair A., George B., Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters 2003:83(14):2931–2933. https://doi.org/10.1063/1.1602578.10.1063/1.1602578Search in Google Scholar

[20] Kamyar A., Saidur R., Hasanuzzaman M. Application of Computational Fluid Dynamics (CFD) for nanofluids. International Journal of Heat and Mass Transfer 2012:55(15–16):4104–4115. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.05210.1016/j.ijheatmasstransfer.2012.03.052Search in Google Scholar

[21] Namburu P. K., Kulkarni D. P., Dandekar A., Das D. K. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro & Nano Letters 2007:2(3):67–71. https://doi.org/10.1049/mnl:2007003710.1049/mnl:20070037Search in Google Scholar

[22] Collins P. G., Avouris P. Nanotubes for electronics. Scientific American 2000:283(6):62–69. https://doi.org/10.1038/scientificamerican1200-6210.1038/scientificamerican1200-6211103460Search in Google Scholar

[23] Kumar H. G. P., Xavior M. A., Ashwath P. Ultrasonication and microwave processing of aluminum alloy-Graphene-Al2O3 nanocomposite. Materials and Manufacturing Processes 2018:33(1):13–18. https://doi.org/10.1080/10426914.2016.124485210.1080/10426914.2016.1244852Search in Google Scholar

[24] Yuan W., Zhang Y., Cheng L., Wu H., Zheng L., Zhao D. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. Journal of Materials Chemistry A 2016:4(23):8932–8951. https://doi.org/10.1039/C6TA01546H10.1039/C6TA01546HSearch in Google Scholar

[25] Pop E., Varshney V., Roy A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin 2012:37(12):1273–1281. https://doi.org/10.1557/mrs.2012.20310.1557/mrs.2012.203Search in Google Scholar

[26] Faizal M., Saidur R., Mekhilef S., Alim M. A. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management 2013:76:162–168. https://doi.org/10.1016/j.enconman.2013.07.03810.1016/j.enconman.2013.07.038Search in Google Scholar

[27] Turkyilmazoglu M. Anomalous heat transfer enhancement by slip due to nanofluids in circular concentric pipes. International Journal of Heat and Mass Transfer 2015:85:609–614. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.01510.1016/j.ijheatmasstransfer.2015.02.015Search in Google Scholar

[28] Jamshed W., Aziz A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results in Physics 2018:9:195–205. https://doi.org/10.1016/j.rinp.2018.01.06310.1016/j.rinp.2018.01.063Search in Google Scholar

[29] Cárdenas Contreras E. M., Oliveira G. A., Bandarra Filho E. P. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. International Journal of Heat and Mass Transfer 2019:132:375–387. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.01410.1016/j.ijheatmasstransfer.2018.12.014Search in Google Scholar

[30] Elsheikh A. H., Sharshir S. W., Mostafa M. E., Essa F. A., Ahmed Ali M. K. Applications of nanofluids in solar energy: A review of recent advances. Renewable and Sustainable Energy Reviews 2017:82:3483–3502. https://doi.org/10.1016/j.rser.2017.10.10810.1016/j.rser.2017.10.108Search in Google Scholar

[31] Ganvir R. B., Walke P. V., Kriplani V. M. Heat transfer characteristics in nanofluid—A review. Renewable and Sustainable Energy Reviews 2015:75:451–460. https://doi.org/10.1016/j.rser.2016.11.01010.1016/j.rser.2016.11.010Search in Google Scholar

[32] Gulum M., Bilgin A. An experimental optimization research of methyl and ethyl esters production from safflower oil. Environmental and Climate Technologies 2018:22(1):132–148. https://doi.org/10.2478/rtuect-2018-000910.2478/rtuect-2018-0009Search in Google Scholar

[33] Bait O., Si-Ameur M. Enhanced heat and mass transfer in solar stills using nanofluids: A review. Solar Energy 2018:170:694–722. https://doi.org/10.1016/j.solener.2018.06.02010.1016/j.solener.2018.06.020Search in Google Scholar

[34] Babar H., Sajid M., Ali H. Viscosity of hybrid nanofluids: A critical review. Thermal Science 2019:23(3B):1713–1754. https://doi.org/10.2298/tsci181128015b10.2298/TSCI181128015BSearch in Google Scholar

[35] Sajid M. U., Ali H. M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renewable and Sustainable Energy Reviews 2019:103:556–592. https://doi.org/10.1016/j.rser.2018.12.05710.1016/j.rser.2018.12.057Search in Google Scholar

[36] Bazri S., Badruddin I. A., Naghavi M. S., Bahiraei M. A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy 2018:118:761–778. https://doi.org/10.1016/j.renene.2017.11.03010.1016/j.renene.2017.11.030Search in Google Scholar

[37] Verma S. K., Tiwari A. K. Progress of nanofluid application in solar collectors: A review. Energy Conversion and Management 2015:100:324–346. https://doi.org/10.1016/j.enconman.2015.04.07110.1016/j.enconman.2015.04.071Search in Google Scholar

[38] Yang L., Du K. A comprehensive review on heat transfer characteristics of TiO2 nanofluids. International Journal of Heat and Mass Transfer 2017:108(A):11–31 https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.08610.1016/j.ijheatmasstransfer.2016.11.086Search in Google Scholar

[39] Saidur R., Meng T. C., Said Z., Hasanuzzaman M., Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. International Journal of Heat and Mass Transfer 2012:55(21–22):5899–5907. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.08710.1016/j.ijheatmasstransfer.2012.05.087Search in Google Scholar

[40] Faizal M., Saidur R., Mekhilef S., Faizal M. Potential of Size Reduction of Flat-Plate Solar Collectors when Applying Al2O3 Nanofluid. Advanced Material Research 2014:832:149–153. https://doi.org/10.4028/www.scientific.net/amr.832.14910.4028/www.scientific.net/AMR.832.149Search in Google Scholar

[41] Lomascolo M., Colangelo G., Milanese M., Risi A. De. Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results. Renewable and Sustainable Energy Reviews 2015:43:1182–1198 https://doi.org/10.1016/j.rser.2014.11.08610.1016/j.rser.2014.11.086Search in Google Scholar

[42] Vajjha R. S., Das D. K., Kulkarni D. P. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. International Journal of Heat and Mass Transfer 2010:53:(21–22):4607–4618 https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.03210.1016/j.ijheatmasstransfer.2010.06.032Search in Google Scholar

[43] Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics 2002:91(7):4568–4572. https://doi.org/10.1063/1.145418410.1063/1.1454184Search in Google Scholar

[44] Gherasim I., Roy G., Nguyen C. T., Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. International Journal of Thermal Science 2009:48(8):1486–1493 https://doi.org/10.1016/j.ijthermalsci.2009.01.00810.1016/j.ijthermalsci.2009.01.008Search in Google Scholar

[45] Peyghambarzadeh S. M., Hashemabadi S. H., Jamnani M. S., Hoseini S. M. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Applied Thermal Engineering 2011:31(10):1833–1838. https://doi.org/10.1016/j.applthermaleng.2011.02.02910.1016/j.applthermaleng.2011.02.029Search in Google Scholar

[46] Putra N., Yanuar, Iskandar F. N. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Sciences 2011:35(7):1274–1281. https://doi.org/10.1016/j.expthermflusci.2011.04.01510.1016/j.expthermflusci.2011.04.015Search in Google Scholar

[47] Bhogare R. A., Kothawale B. S. Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant. IOSR Journal of Mechanical and Civil Engineering 2014:11(3):23–30. https://doi.org/10.9790/1684-11352330.10.9790/1684-11352330Search in Google Scholar

[48] Mehtre D. N., Kore S. S. Experimental Analysis of Heat Transfer From Car Radiator Using Nanofluids. International Journal of Medicinal Chemistry and Analysis 2014:2(4):101–106.Search in Google Scholar

[49] Mohammed H. A., Gunnasegaran P., Shuaib N. H. Heat transfer in rectangular microchannels heat sink using nanofluids. International Communications in Heat and Mass Transfer 2010:37(10):1496–1503. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.02010.1016/j.icheatmasstransfer.2010.08.020Search in Google Scholar

[50] Shalchi-Tabrizi A., Seyf H. R. Analysis of entropy generation and convective heat transfer of Al 2O 3 nanofluid flow in a tangential micro heat sink. International Journal of Heat and Mass Transfer 2012:55(15–16):4366–4375. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.00510.1016/j.ijheatmasstransfer.2012.04.005Search in Google Scholar

[51] Tiecher R. F. P., Parise J. A. R. A comparative parametric study on single-phase Al2O3-water nanofluid exchanging heat with a phase-changing fluid. International Journal of Thermal Sciences 2014:74:190–198. https://doi.org/10.1016/j.ijthermalsci.2013.06.01410.1016/j.ijthermalsci.2013.06.014Search in Google Scholar

[52] Naraki M., Peyghambarzadeh S. M., Hashemabadi S. H., Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. International Journal of Thermal Sciences 2013:66:82–90 https://doi.org/10.1016/j.ijthermalsci.2012.11.01310.1016/j.ijthermalsci.2012.11.013Search in Google Scholar

[53] Khairul M. A., Saidur R., Rahman M. M., Alim M. A., Hossain A., Abdin Z. Heat transfer and thermodynamic analyses of a helically coiled heat exchanger using different types of nanofluids. International Journal of Heat and Mass Transfer 2013:67:398–403. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.03010.1016/j.ijheatmasstransfer.2013.08.030Search in Google Scholar

[54] Wen D., Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer 2004:47(24):5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012.10.1016/j.ijheatmasstransfer.2004.07.012Search in Google Scholar

[55] Namburu P. K., Das D. K., Tanguturi K. M., Vajjha R. S. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. International Journal of Thermal Sciences 2009:48(2):290–302. https://doi.org/10.1016/j.ijthermalsci.2008.01.00110.1016/j.ijthermalsci.2008.01.001Search in Google Scholar

[56] Lee S., Choi S. U.-S., Li S., Eastman J. A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer 1999:121(2):280. https://doi.org/10.1115/1.282597810.1115/1.2825978Search in Google Scholar

[57] Seyf H. R., Feizbakhshi V. Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. International Journal of Thermal Sciences 2012:58:168–179. https://doi.org/10.1016/j.ijthermalsci.2012.02.018.10.1016/j.ijthermalsci.2012.02.018Search in Google Scholar

[58] Choi S. U., Eastman J., Phillpot S., Keblinski P. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer 2002:45(4):855–863. https://doi.org/10.1016/S0017-9310(01)00175-210.1016/S0017-9310(01)00175-2Search in Google Scholar

[59] Jmai R., Ben-Beya B., Lili T. Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices and Microstructures 2013:53(1):130–154. https://doi.org/10.1016/j.spmi.2012.10.00310.1016/j.spmi.2012.10.003Search in Google Scholar

[60] Xuan Y., Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat and Mass Transfer 2003:125(1):151. https://doi.org/10.1115/1.153200810.1115/1.1532008Search in Google Scholar

[61] Putra N., Roetzel W., Das S. K. Natural convection of nano-fluids. Journal of Heat and Mass Transfer und Stoffuebertragung 2003:39(8–9):775–784. https://doi.org/10.1007/s00231-002-0382-z10.1007/s00231-002-0382-zSearch in Google Scholar

[62] Huminic G., Huminic A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. International Journal of Heat and Mass Transfer 2011:54(19–20):4280–4287. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.01710.1016/j.ijheatmasstransfer.2011.05.017Search in Google Scholar

[63] Chandrasekar M., Suresh S., Chandra Bose A. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Experimental Thermal and Fluid Science 2009:34(2):122–130. https://doi.org/10.1016/j.expthermflusci.2009.10.00110.1016/j.expthermflusci.2009.10.001Search in Google Scholar

[64] Suresh S., Venkitaraj K. P., Selvakumar P. Comparative study on thermal performance of helical screw tape inserts in laminar flow using Al2O3/water and CuO/water nanofluids. Superlattices and Microstructures 2011:49(6):608–622. https://doi.org/10.1016/j.spmi.2011.03.01210.1016/j.spmi.2011.03.012Search in Google Scholar

[65] Zamzamian A., Oskouie S. N., Doosthoseini A., Joneidi A., Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science 2011:35(3):495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.01310.1016/j.expthermflusci.2010.11.013Search in Google Scholar

[66] Keshavarz Moraveji M., Esmaeili E. Comparison between single-phase and two-phases CFD modeling of laminar forced convection flow of nanofluids in a circular tube under constant heat flux. International Communications in Heat and Mass Transfer 2012:39(8):1297–1302. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.01210.1016/j.icheatmasstransfer.2012.07.012Search in Google Scholar

[67] Anoop K. B., Sundararajan T., Das S. K. Effect of particle size on the convective heat transfer in nanofluid in the developing region. International Journal of Heat and Mass Transfer 2009:52(9–10):2189–2195. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.06310.1016/j.ijheatmasstransfer.2007.11.063Search in Google Scholar

[68] Ahmed M. A., Shuaib N. H., Yusoff M. Z., Al-Falahi A. H. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. International Communications in Heat and Mass Transfer 2011:38(10):1368–1375. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.01310.1016/j.icheatmasstransfer.2011.08.013Search in Google Scholar

[69] Garoosi F., Bagheri G., Talebi F. Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. International Journal of Heat and Mass Transfer 2013:67:362–376. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.034.10.1016/j.ijheatmasstransfer.2013.08.034Search in Google Scholar

[70] Fotukian S. M., Nasr Esfahany M. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. International Communications of Heat and Mass Transfer 2010:37(2):214–219. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.00310.1016/j.icheatmasstransfer.2009.10.003Search in Google Scholar

[71] Daviran S., Kasaeian A., Tahmooressi H., Rashidi A., Wen D., Mahian O. Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: A novel approach. International Journal of Heat and Mass Transfer 2017:108(A):822–829. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.07110.1016/j.ijheatmasstransfer.2016.12.071Search in Google Scholar

[72] Fan L., Khodadadi J. M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable and Sustainable Energy Reviews 2011:15(1):24–46. https://doi.org/10.1016/j.rser.2010.08.00710.1016/j.rser.2010.08.007Search in Google Scholar

[73] Dehury P., Singh J., Banerjee T. Thermophysical and Forced Convection Studies on (Alumina + Menthol)-Based Deep Eutectic Solvents for Their Use as a Heat Transfer Fluid. ACS Omega 2018:3(12):18016–18027. https://doi.org/10.1021/acsomega.8b0266110.1021/acsomega.8b02661664431531458391Search in Google Scholar

[74] Hordy N., Rabilloud D., Meunier J. L., Coulombe S. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Solar Energy 2014:105:82–90. https://doi.org/10.1016/j.solener.2014.03.01310.1016/j.solener.2014.03.013Search in Google Scholar

[75] Kalbande V. P., Walke P. V. Oil-and Aluminum-Based Thermal Storage System Using Flat Plate Solar Collector. In Kolhe M., Labhasetwar P., Suryawanshi H. (eds) Smart Technologies for Energy, Environment and Sustainable Development. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, 2019:553–562. https://doi.org/10.1007/978-981-13-6148-7_5310.1007/978-981-13-6148-7_53Search in Google Scholar

[76] Arshad W., Ali H. M. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. International Journal of Heat and Mass Transfer 2017:107:995–1001. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.12710.1016/j.ijheatmasstransfer.2016.10.127Search in Google Scholar

[77] Gan Y., Qiao L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures. Energy and Fuels 2012:26(7):4224–4230. https://doi.org/10.1021/ef300493m10.1021/ef300493mSearch in Google Scholar

[78] Mussard M., Nydal O. J. Charging of a heat storage coupled with a low-cost small-scale solar parabolic trough for cooking purposes. Solar Energy 2013:95:144–154. https://doi.org/10.1016/j.solener.2013.06.01310.1016/j.solener.2013.06.013Search in Google Scholar

[79] Mussard M., Nydal O. J. Comparison of oil and aluminum-based heat storage charged with a small-scale solar parabolic trough. Applied Thermal Engineering 2013:58(1–2):146–154. https://doi.org/10.1016/j.applthermaleng.2013.03.05910.1016/j.applthermaleng.2013.03.059Search in Google Scholar

[80] Mussard M., Gueno A., Nydal O. J. Experimental study of solar cooking using heat storage in comparison with direct heating. Solar Energy 2013:98(C):375–383. https://doi.org/10.1016/j.solener.2013.09.01510.1016/j.solener.2013.09.015Search in Google Scholar

[81] Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-005610.2478/rtuect-2019-0056Search in Google Scholar

[82] Sirmelis R., Vanaga R., Freimanis R., Blumberga A. Solar Facade Module for Nearly Zero Energy Building. Optimization Strategies Environmental and Climate Technologies 2019:23(3):170–181. https://doi.org/10.2478/rtuect-2019-008710.2478/rtuect-2019-0087Search in Google Scholar

[83] Sharma A., Tyagi V. V., Chen C. R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009:13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.00510.1016/j.rser.2007.10.005Search in Google Scholar

[84] Ebrahimnia-Bajestan E., Charjouei Moghadam M., Niazmand H., Daungthongsuk W., Wongwises S. Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer. 2016:92:1041–1052. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.10710.1016/j.ijheatmasstransfer.2015.08.107Search in Google Scholar

[85] Wang W., Wu Z., Li B., Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. Journal of Thermal Analysis and Calorimetry 2019:136(3):1037–1051. https://doi.org/10.1007/s10973-018-7765-y10.1007/s10973-018-7765-ySearch in Google Scholar

[86] Mussard M. A solar concentrator with heat storage and self-circulating liquid. Norwegian University of Science and Technology, 2013.Search in Google Scholar

[87] Kalbande V. P., Walke P. V., Shelke R. Aluminum-based thermal storage system with solar collector using nanofluid. Energy Storage 2019:1(6):1–7. https://doi.org/10.1002/est2.99.10.1002/est2.99Search in Google Scholar

[88] Gálvez B. J., et al. Solar Energy Conversion and Photoenergy System-Volume II. EOLSS, 2009.Search in Google Scholar

[89] Notton G., Motte F., Cristofari C., Canaletti J. L. Performances and numerical optimization of a novel thermal solar collector for residential building. Renewable and Sustainable Energy Reviews 2014:33:60–73. https://doi.org/10.1016/j.rser.2014.01.06110.1016/j.rser.2014.01.061Search in Google Scholar

[90] Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of temperature based approach over the energy based approaches in the buildings thermal assessment. Environmental and Climate Technologies 2017:19(1):39–50. https://doi.org/10.1515/rtuect-2017-000410.1515/rtuect-2017-0004Search in Google Scholar

[91] Tagliafico L. A., Scarpa F., De Rosa M. Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors – A review. Renewable and Sustainable Energy Reviews 2014:30:526–537. https://doi.org/10.1016/j.rser.2013.10.02310.1016/j.rser.2013.10.023Search in Google Scholar

[92] Al-Waeli A. H. A., Chaichan M. T., Sopian K., Kazem H. A., Mahood H. B., Khadom A. A. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Solar Energy 2018:177:178–191. https://doi.org/10.1016/j.solener.2018.11.016.10.1016/j.solener.2018.11.016Search in Google Scholar

[93] Lari M. O., Sahin A. Z. Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications. Renewable Energy 2018:122:98–107. https://doi.org/10.1016/j.renene.2018.01.03410.1016/j.renene.2018.01.034Search in Google Scholar

[94] Kabeel A. E., El-Said E. M. S. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination 2014:333(1):10–22. https://doi.org/10.1016/j.desal.2013.11.021.10.1016/j.desal.2013.11.021Search in Google Scholar

[95] Said Z., Saidur R., Rahim N. A., Alim M. A. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy and Buildings 2014:78:1–9. https://doi.org/10.1016/j.enbuild.2014.03.06110.1016/j.enbuild.2014.03.061Search in Google Scholar

[96] Schuchardt G. K. Integration of decentralized thermal storages within district heating (DH) networks. Environmental and Climate Technologies 2016:18(1):5–16. https://doi.org/10.1515/rtuect-2016-0009.10.1515/rtuect-2016-0009Search in Google Scholar

[97] Nasrin R., Alim M. A. Semi-empirical relation for forced convective analysis through a solar collector. Solar Energy 2014:105:455–467. https://doi.org/10.1016/j.solener.2014.03.03510.1016/j.solener.2014.03.035Search in Google Scholar

[98] Al-Kayiem H. H., Lin S. C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Solar Energy 2014:109(1):82–92. https://doi.org/10.1016/j.solener.2014.08.021.10.1016/j.solener.2014.08.021Search in Google Scholar

[99] Sekhar Y. R., Sharma K. V., Karupparaj R. T., Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Engineering 2013:64:1474–1484. https://doi.org/10.1016/j.proeng.2013.09.22910.1016/j.proeng.2013.09.229Search in Google Scholar

[100] Prakasam M. J. S., Thottipalayam Vellingiri A. T., Nataraj S. An experimental study of the mass flow rates effect on flat-plate solar water heater performance using Al2O3/water nanofluid. Thermal Science 2017:21:379–388. https://doi.org/10.2298/TSCI17S2379P.10.2298/TSCI17S2379PSearch in Google Scholar

[101] Dasaien A. V., Elumalai N. Performance Enhancement Studies in a Thermosyphon Flat Plate Solar Water Heater with CuO Nanofluid. Thermal science 2017:21:6B:2757–2768.10.2298/TSCI151005012DSearch in Google Scholar

[102] Colangelo G., Milanese M., and De Risi A. Numerical simulation of thermal efficiency of an innovative Al2O3nanofluid solar thermal collector influence of nanoparticles concentration. Thermal Science 2017:21(6B):2769–2779. https://doi.org/10.2298/TSCI151207168C10.2298/TSCI151207168CSearch in Google Scholar

[103] Colangelo G., Favale E., De Risi A., Laforgia D. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Applied Energy 2013:111:80–93. https://doi.org/10.1016/j.apenergy.2013.04.06910.1016/j.apenergy.2013.04.069Search in Google Scholar

[104] Nasrin R., Parvin S., Alim M. A. Effect of Prandtl number on free convection in a solar collector filled with nanofluid. Procedia Engineering 2013:56:54–62. https://doi.org/10.1016/j.proeng.2013.03.08810.1016/j.proeng.2013.03.088Search in Google Scholar

[105] Hatami M., Khazayinejad M., Zhou J., Jing D. Three-dimensional and two-phase nanofluid flow and heat transfer analysis over a stretching infinite solar plate. Thermal Science 2018:22(2):871–884. https://doi.org/10.2298/TSCI160614266H10.2298/TSCI160614266HSearch in Google Scholar

[106] Karami M., Akhavan Bahabadi M. A., Delfani S., Ghozatloo A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Solar Energy Materials and Solar Cells 2014:121:114–118. https://doi.org/10.1016/j.solmat.2013.11.00410.1016/j.solmat.2013.11.004Search in Google Scholar

[107] Gupta H. K., Das Agrawal G., Mathur J. Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Studies in Thermal Engineering 2015:5:70–78. https://doi.org/10.1016/j.csite.2015.01.00210.1016/j.csite.2015.01.002Search in Google Scholar

[108] Liu J., Ye Z., Zhang L., Fang X., Zhang Z. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Solar Energy Materials and Solar Cells 2015:136:177–186. https://doi.org/10.1016/j.solmat.2015.01.01310.1016/j.solmat.2015.01.013Search in Google Scholar

[109] Ali H. M., Arshad W. Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. International Journal of Heat and Mass Transfer 2017:106:465–472. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.06110.1016/j.ijheatmasstransfer.2016.08.061Search in Google Scholar

[110] Luo Z., Wang C., Wei W., Xiao G., Ni M. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. International Journal of Heat and Mass Transfer 2014:75:262–271. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.07210.1016/j.ijheatmasstransfer.2014.03.072Search in Google Scholar

[111] Zhang L., Liu J., He G., Ye Z., Fang X., Zhang Z. Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Solar Energy Materials and Solar Cells 2014:130:521–528. https://doi.org/10.1016/j.solmat.2014.07.04010.1016/j.solmat.2014.07.040Search in Google Scholar

[112] He Q., Wang S., Zeng S., Zheng Z. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Conversion and Management 2013:73:150–157. https://doi.org/10.1016/j.enconman.2013.04.01910.1016/j.enconman.2013.04.019Search in Google Scholar

[113] Sokhansefat T., Kasaeian A. B., Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renewable and Sustainable Energy Reviews 2014:33:636–644. https://doi.org/10.1016/j.rser.2014.02.028.10.1016/j.rser.2014.02.028Search in Google Scholar

[114] Ghasemi S. E., Ranjbar A. A. Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. International Journal of Hydrogen Energy 2017:42(34):21626–21634. https://doi.org/10.1016/j.ijhydene.2017.07.08710.1016/j.ijhydene.2017.07.087Search in Google Scholar

[115] Khullar V., Tyagi H., Phelan P. E., Otanicar T. P., Singh H., Taylor R. A. Solar energy harvesting using nanofluids-based concentrating solar collector. Journal of Nanotechnology in Engineering and Medicine 2012:3(3):31003. https://doi.org/10.1115/1.400738710.1115/1.4007387Search in Google Scholar

[116] Lu L., Liu Z. H., Xiao H. S. Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Part 1: Indoor experiment. Solar Energy 2011:85(2):379–387. https://doi.org/10.1016/j.solener.2010.11.00810.1016/j.solener.2010.11.008Search in Google Scholar

[117] Goudarzi K., Shojaeizadeh E., Nejati F. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector. Applied Thermal Engineering 2014:73(1):1236–1243. https://doi.org/10.1016/j.applthermaleng.2014.07.06710.1016/j.applthermaleng.2014.07.067Search in Google Scholar

[118] Selvakumar P., Somasundaram P., Thangavel P. Performance study on evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough. Energy Conversion and Management 2014:85:505–510. https://doi.org/10.1016/j.enconman.2014.05.06910.1016/j.enconman.2014.05.069Search in Google Scholar

[119] Yousefi T., Shojaeizadeh E., Veysi F., Zinadini S. An experimental investigation on the effect of pH variation of MWCNT-H 2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy 2012:86(2):771–779. https://doi.org/10.1016/j.solener.2011.12.003.10.1016/j.solener.2011.12.003Search in Google Scholar

[120] Yousefi T., Veisy F., Shojaeizadeh E., Zinadini S. An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Experimental Thermal and Fluid Science 2012:39:207–212. https://doi.org/10.1016/j.expthermflusci.2012.01.02510.1016/j.expthermflusci.2012.01.025Search in Google Scholar

[121] Faizal M., Saidur R., Mekhilef S. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. ICEE 2013, IOP Conference Series: Earth and Environmental Science 2013:16(1). https://doi.org/10.1088/1755-1315/16/1/01200410.1088/1755-1315/16/1/012004Search in Google Scholar

[122] Nasrin R., Alim M. A., Chamkha A. J. Effects of physical parameters on natural convection in a solar collector filled with nanofluid. Heat Transfer—Asian Research 2013:42(1):73–88. https://doi.org/10.1002/htj.2102610.1002/htj.21026Search in Google Scholar

[123] Tiwari A. K., Ghosh P., Sarkar J. Solar water heating using nanofluids – a comprehensive overview and environmental impact analysis. International Journal of Emerging Technology and Advanced Engineering 2013:3(9001):221–224.Search in Google Scholar

[124] Kasaeian M. S. A. B., Sokhansefat T., Abbaspour M. J. Numerical Study of Heat Transfer Enhancement by using Al2O3/Synthetic Oil Nanofluid in a Parabolic Trough Collector Tube. World Academy of Science, Engineering and Technology 2014:69:1154–1159.Search in Google Scholar

[125] Tyagi H., Phelan P., Prasher R. Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering 2009:131(4):041004. https://doi.org/10.1115/1.319756210.1115/1.3197562Search in Google Scholar

[126] Elmir M., Mehdaoui R., Mojtabi A. Numerical simulation of cooling a solar cell by forced convection in the presence of a nanofluid. Energy Procedia 2012:18:594–603. https://doi.org/10.1016/j.egypro.2012.05.072.10.1016/j.egypro.2012.05.072Search in Google Scholar

[127] Liu Z. H., Hu R. L., Lu L., Zhao F., Xiao H. S. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Conversion and Management 2013:73:135–143. https://doi.org/10.1016/j.enconman.2013.04.01010.1016/j.enconman.2013.04.010Search in Google Scholar

[128] De Risi A., Milanese M., Laforgia D. Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renewable Energy 2013:58:134–139. https://doi.org/10.1016/j.renene.2013.03.01410.1016/j.renene.2013.03.014Search in Google Scholar

[129] Cui Y., Zhu Q. Study of photovoltaic/thermal systems with MgO-water nanofluids flowing over silicon solar cells. Asia-Pacific Power and Energy Engineering Conference, 2012.10.1109/APPEEC.2012.6307203Search in Google Scholar

[130] Li Y., Xie H. Q., Yu W., Li J. Investigation on Heat Transfer Performances of Nanofluids in Solar Collector. Mater. Sci. Forum 2011:694:33–36. https://doi.org/10.4028/www.scientific.net/msf.694.3310.4028/www.scientific.net/MSF.694.33Search in Google Scholar

[131] Chougule S. S., Pise A. T., Madane P. A. Performance of nanofluid-charged solar water heater by solar tracking system. IEEE-international conference on advances in engineering, science and management ICAESM 2012, 2012.Search in Google Scholar

[132] Otanicar T. P., Phelan P. E., Prasher R. S., Rosengarten G., Taylor R. A. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy 2010:2(3):033102. https://doi.org/10.1063/1.342973710.1063/1.3429737Search in Google Scholar

[133] Taylor R. A. et al. Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy 3(2):023104. https://doi.org/10.1063/1.357156510.1063/1.3571565Search in Google Scholar

[134] Lenert A., Wang E. N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Solar Energy 2012:86(1):253–265. https://doi.org/10.1016/j.solener.2011.09.02910.1016/j.solener.2011.09.029Search in Google Scholar

[135] Taylor R. A., Otanicar T., Rosengarten G. Nanofluid-based optical filter optimization for PV/T systems. Light: Science and Applications 2012:1(e34):1–7. https://doi.org/10.1038/lsa.2012.3410.1038/lsa.2012.34Search in Google Scholar

[136] Taylor R. A., Phelan P. E., Otanicar T. P., Adrian R., Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters 2011:6(1):1–11. https://doi.org/10.1186/1556-276X-6-22510.1186/1556-276X-6-225321128321711750Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other